
SUMMARY

1. Clinical and experimental pharmacologists and physio-
logists often wish to compare two methods of measurement, or
two measurers.

2. Biostatisticians insist that what should be sought is not
agreement between methods or measurers, but disagreement or
bias.

3. If measurements have been made on a continuous scale,
the main choice is between the Altman–Bland method of differ-
ences and least products regression analysis. It is argued that
although the former is relatively simple to execute, it does not
distinguish adequately between fixed and proportional bias.
Least products regression analysis, although more difficult to
execute, does achieve this goal. There is almost universal agree-
ment among biostatisticians that the Pearson product–moment
correlation coefficient (r) is valueless as a test for bias.

4. If measurements have been made on a categorical scale,
unordered or ordered, the most popular method of analysis is
to use the kappa statistic. If the categories are unordered, the
unweighted kappa statistic (K) is appropriate. If the categories
are ordered, as they are in most rating scales in clinical, psycho-
logical and epidemiological research, the weighted kappa 
statistic (Kw) is preferable. But Kw corresponds to the intraclass
correlation coefficient, which, like r for continuous variables, is
incapable of detecting bias. Simple techniques for detecting bias
in the case of ordered categorical variables are described and
commended to investigators.

Key words: categorical variables, continuous variables, 
correlation, fixed bias, kappa statistic, least products regression
analysis, limits of agreement, log-linear modelling, McNemar
test, method of differences, proportional bias.

INTRODUCTION

Biomedical investigators often wish to compare two methods of
measurement, usually to compare a new method with an established
one. It is an important prerequisite for such studies that the same
individual must make the measurements or ratings. Alternatively,

investigators may wish to compare the performances of two 
measurers or raters who are using the same method of measurement,
or to evaluate the repeatability of measurements made by the 
same observer.

In clinical and laboratory biomedical science, measurements of
a variable are usually made on a continuous scale. Examples of this
are measurements of blood pressure, blood gases, lung function and
plasma concentrations of a variety of endogenous or exogenous 
substances. In contrast, categorical scales are used to describe or
score attributes by epidemiologists, social scientists, clinicians and,
occasionally, laboratory scientists. These categorical scales may be
unordered, as in the description of eye colour or taste, or they may
be ordered, as in rating scales for cardiovascular functional status,
operative (anaesthetic) risk, severity of stroke and any number of
ad hoc scales. Somewhere in between are quasi-continuous scales,
such as indices of disability, quality of life and so forth, when the
range of the scales can be between 20 and 42.

Whatever the scale of measurement, there is an unusual consensus
among biostatisticians that the goal of making these comparisons
should not be to demonstrate agreement, but to detect disagreement
or bias. However, biostatisticians disagree, sometimes sharply, on
how best to achieve this goal. The purpose of the present review is
to describe some of the statistical techniques that can be used to
detect bias and to evaluate them critically.

CONTINUOUS VARIABLES

This heading is shorthand for variables that are measured on a 
continuous, or interval, scale. These measurements include distance,
weight, concentration, pressure, velocity, temperature, age and so
forth. This section deals with three techniques for comparing 
methods of measurement: (i) regression analysis; (ii) the method 
of differences; and (iii) correlation.

Detecting bias by regression analysis

As a rule, the values obtained by one method of measurement are
linearly related to those obtained by another. It seems to follow 
logically, therefore, that linear regression analysis would be a 
useful tool for comparing methods of measurement. But what 
sort of linear regression analysis?

The familiar form is least squares of y regression analysis, 
commonly known as ordinary least squares (OLS) regression. This
is what is provided by most computer statistical programs. But, for
comparing two methods of measurement, this is the wrong model
on two counts. First, under statistical theory, it is an assumption of
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OLS regression that whereas the values of the y variable (predicted)
are attended by random error, the values of the x variable (predictor)
are fixed in advance and without random error. It is obvious that
this assumption is rarely, if ever, fulfilled in method comparison 
studies. Second, by convention, in OLS regression the values of 
the y variable are regarded as ‘true’, the ‘gold standard’or the ‘bench-
mark’. Yet, when two methods are compared, it is usual that 
neither can be regarded as a benchmark. In this context, it is a 
property of OLS regression analysis that the line resulting from 
minimizing the sums of the squares of the deviations of the y
values from the line and that resulting from minimizing the sums

of the squares of the deviations of the x values from the line, are
distinctly and sometimes markedly different.1

There is an alternative to the OLS regression model. It is 
ordinary least products (OLP) regression analysis, whose proper-
ties and method of execution have been described in detail else-
where.1 Least products regression analysis allows for both the y and
the x values to be attended by random error. It depends on mini-
mizing the sum of the products of the deviations of both x and y
values from the estimated regression line. It requires no judgement
that the y variable or the x variable provides ‘true’ or ‘benchmark’
values. Instead, it provides a technique for interchanging two meth-

Fig. 1 Data points and ordinary least products regression lines for four hypothetical comparisons of Methods A and B for measuring systolic blood 
presssure. (a) No bias; (b) proportional bias; (c) fixed bias; (d) proportional and fixed bias. Data points are given in Appendix 1. Details are given in 
Table 1. Regression model: E(A) = a + b(B). Coefficients for the four regression lines are given in Table 1. Proportional bias: 95% confidence interval 
(CI) for slope (b) does not include 1. Fixed bias: 95% CI for intercept (a) does not include 0. In all four cases, Pearson’s r = 0.939.
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ods, or calibrating one against the other. It detects proportional and
fixed bias (or both) between two methods.

There is a drawback to OLP regression analysis: whereas OLS
regression analysis can be executed by a handheld calculator or even
with a pencil and paper, OLP regression analysis is an iterative pro-
cess that requires a computer program that can execute non-linear
regression analysis by way of a loss function.1 One assumption that
underlies OLP (and OLS) regression analysis is that the scatter of
values around the regression line is constant over the whole range
of y (and x) values. In biological work, it is common that the 
scatter increases with the level of y (and x). In this circumstance,
weighted least products (WLP) regression analysis can be used.1 But
this, too, is catered for by most computer statistics programs.

Detecting bias by the method of differences

The notion of examining the differences between the results of 
two methods of measurement was conceived by Altman and Bland2

and has recently been elaborated by the same authors.3 Their 
proposal is that the differences should be plotted against the 
means. If the OLS regression line fitted to the plot has a slope 
(b) that differs ‘significantly’ from 0, then it is argued that propor-
tional bias exists. If the mean value for the difference (d

–
) differs

‘significantly’ from 0 on the basis of a one-sample t-test, then it is
argued that there is fixed (or, in their words,2,3 relative) bias. Altman
has been a strong and persistent advocate for making inferences 
in medical research by using estimation by means of confidence
intervals (CI) rather than using P values resulting from hypothesis
testing.4 The CI technique can be applied to the analysis of 
differences.3

The slope of the regression of differences on means is a satis-
factory method for detecting proportional bias. Although OLS
regression analysis is used by Altman and Bland to estimate slope,
this can be defended by the argument that differences must always
be the dependent (predicted) variable, means never. There is, how-
ever, a serious flaw in detecting fixed bias by the method of differ-
ences.1 It is that if there is proportional bias (b � 0), then the mean
difference (d

–
) will almost inevitably deviate from zero. Thus, there

is the risk that fixed bias will be overdiagnosed. The exception to
this is if proportional bias is in one direction (e.g. b > 0) and fixed
bias in the opposite direction. Then d

–
may be close to 0 and fixed

bias will be underdiagnosed.

Quantifying disagreement between methods of 
measurement

Bland and Altman make the important point that the mere absence
of bias often does not provide sufficient information to allow a judge-

ment that one method can, or cannot, be substituted for the other.3

The ability to make this judgement may be very important in 
clinical practice. They suggest that a useful aid to making this 
judgement is to calculate what they call the 95% limits of agree-
ment. Their formula for this is:

d
–

± z2�sd [1]

where d
–

is the mean difference between methods, sd is the standard
deviation of the difference between methods and z2� is the 
standardized normal deviate corresponding to two-sided P = 0.05
(1.960).

A better, somewhat more conservative, formulation is safer in the
case of small samples, for instance n < 100.5 It is:

d
–

± tn – 1,2�sd�(1 + 1/n) [2]

where d
–

is the mean difference between methods, sd is the standard
deviation of the difference between methods, tn – 1,2� is the value of
t corresponding to two-sided P = 0.05 for d.f. = n – 1 and �(1 + 1/n)
is an adjustment for small sample size.

Equations 1 and 2 are more commonly known as 95% tolerance
limits for the population.5 That is, it is predicted that 95% of 
values in the parent population of differences will fall within 
these limits.

Hypothetical example of a continuous variable

Imagine that four different studies have been conducted in which
one indirect method for measuring systolic blood pressure has been
compared with another. One method (B) is common to all studies.
The other four methods are coded A1, A2, A3 and A4. The data
resulting from these studies, each in 26 subjects, are provided in
Appendix 1.

These four studies were analysed first by ordinary least products
(OLP) regression analysis.1 The outcomes are given in Fig. 1 and
Table 1. They are described as indicating no bias, proportional bias,
fixed bias or both proportional and fixed bias on the basis of 
the 95% CI attached to the OLP regression coefficients (Fig. 1; 
Table 1).

The four hypothetical studies were then re-analysed by the
Altman–Bland method of differences.2,3 The results of these 
analyses are presented in Fig. 2 and Tables 2,3. Proportional bias 
is indicated if the slope (bA.B) of the OLS regression of differences
on means differs ‘significantly’ from 0 (P � 0.05) or, equivalently,
if the 95% CI for bA.B does not include 0. Fixed bias is indicated 
if the difference (d

–
) differs ‘significantly’ from 0 (P � 0.05) by 

one-sample t-test or, equivalently, if the 95% CI for d
–

does not
include 0. In Fig. 1b and Table 1b, OLP regression analysis indicates
that there is proportional, but not fixed, bias. However, in Fig. 2b

Table 1 Outcome of analyses by ordinary least products regression

Proportional r a 95% CI b 95% CI Proportional bias Fixed bias

(a) A1B 0.939 – 8.8 – 32.6, 15.0 1.056 0.900, 1.211 No No
(b) A2B 0.939 – 7.0 – 26.0, 12.0 0.844 0.720, 0.969 Yes No
(c) A3B 0.939 24.2 0.4, 48.0 1.056 0.900, 1.211 No Yes
(d) A4B 0.939 19.4 0.4, 38.4 0.844 0.720, 0.969 Yes Yes

For data used in regressions, see Appendix 1.
r, product–moment correlation coefficient. a, b, coefficients in ordinary least products regression model E(A) = a + b(B); a, A (y axis) intercept; b, slope;

proportional bias, if 95% confidence interval (CI) for b does not include 1; fixed bias, if 95% CI for a does not include 0.
See Fig. 1 for graphical display.
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and Tables 2b,3b, the method of differences declares that there is
fixed as well as proportional bias.

The outcomes of OLP regression versus the method of differences,
with reference to the panels in Figs 1,2, can be summarized as shown
in Table 4.

In short, if the method of analysing differences is used, fixed bias
can be confounded by proportional bias. If the method of OLP
regression analysis is used, this confounding effect does not occur.

As for the 95% level of agreement (95% tolerance limits for the

population of differences), this is reliable only when there is no 
proportional bias (Tables 5a and 5c).

Correlation

Every investigator knows of the product–moment correlation 
coefficient (r), described by Karl Pearson over 100 years ago.6 But,
how many know how to interpret r? It is a common misapprehension
that correlation is synonymous with cause-and-effect. That is simply

Fig. 2 Data points for plot of differences against means for four hypothetical comparisons of Methods A and B for measuring systolic blood pressure. (a)
No bias; (b) proportional and fixed bias; (c) fixed bias; (d) proportional and fixed bias. Data points are given in Appendix 1. Details are given in Tables 2,3.
Solid lines, ordinary least squares regression of differences on means. (�), mean value of difference with 95% confidence interval (CI) bars. Proportional
bias: slope (b) differs from 0 at P � 0.05. Fixed bias: mean difference (d

–
) differs from 0 at P � 0.05 (and 95% CI does not include 0).
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not so. In a vague way, r is a measure of association. It is better
interpreted as an index of goodness-of-fit of a linear regression model
to the observed values. The formula for calculating r can be found
in most elementary statistical texts. It incorporates the notion of 
deviations of both y and x values from a regression line.

Altman and Bland were among the first to point out that r is use-
less for detecting bias in method comparison studies,2,3 an opinion
that is wholeheartedly supported by the author.1 If some doubt this,
they should inspect Table 1 and Fig. 1. These show clearly that a
large and statistically ‘highly significant’ value for r (0.939) can
coexist with gross bias. In short, the correlation coefficent has no
place in this review. The same is true of the intraclass correlation
coefficient.7

Commentary

It appears that the Altman–Bland method of differences is not always
safe as a technique for detecting fixed bias. Does this matter?

It probably does. Proportional bias is not uncommon when 
methods of measuring variables such as cardiac output or blood 
pressure are compared. This may not matter too much if the main
clinical interest is in percentage change from baseline. However,
fixed bias is a more serious phenomenon. It means that the starting
points (or end-points) of the two methods are different. This, in turn,
implies that there is a serious and irremediable difference between

the two methods. For this reason, it is important that the method for
detecting fixed bias be accurate.

As regards the so-called 95% limits of agreement (Table 5),3 it is
clear from the foregoing that only when there is no proportional bias
can this technique be used safely to decide whether one method 
corresponds well enough to the other so that either may be used in
clinical practice, as in Tables 5a,5b. In Table 5a, when there is no
bias (Fig. 1, Table 1), the difference between the two methods 
for measuring systolic blood pressure could be as great as 
19.16 � 2 = 36.32 mmHg. The same is the case if there is fixed 
bias only. It is unlikely that this would be acceptable to hyper-
tensionologists.

There are two reasons for these unacceptably wide limits of agree-
ment in the hypothetical example: (i) the group (sample) size is very
small (n = 26); and (ii) systolic blood pressure is a difficult variable
to investigate in this way. Both the minimal value (say, 50 mmHg)
and the maximal value (say, 250 mmHg) are far removed from zero.
This means that the coefficients in OLP regression analysis are
almost inevitably attended by wide confidence limits.1 These could
be narrowed only by studying a much larger group (sample).

Table 2 Outcomes of analyses of differences by ordinary least squares regression

Regression r a b P Proportional bias

(a) (A1 – B)/(meanA1B) 0.155 –8.8 0.056 0.450 No
(b) (A2 – B)/(meanA2B) 0.442 –6.9 –0.174 0.024 Yes
(c) (A3 – B)/(meanA3B) 0.155 23.3 0.056 0.450 No
(d) (A4 – B)/(meanA4B) 0.442 21.8 –0.174 0.024 Yes

For data used in regressions, see Appendix 1.
r, product–moment correlation coefficient. a, b, coefficients in ordinary least squares regression model E(A – B) = a + b(mean AB); proportional bias, if

b differs significantly from 0 (i.e. P � 0.05).
See Fig. 2 for graphical display.

Table 3 Outcomes of analysis of differences by one-sample t-test

Difference Mean difference 95% CI for mean t P Fixed 
(±SEM) difference bias

(a) (A1 – B) –0.39 ± 1.79 –4.07, 3.30 –0.215 0.832 No
(b) (A2 – B) –30.50 ± 1.76 –34.12, –26.88 –17.345 < 0.0001 Yes
(c) (A3 – B) 32.62 ± 1.79 28.93, 36.30 18.214 < 0.0001 Yes
(d) (A4 – B) –4.10 ± 1.76 –7.72, –0.48 –2.332 0.028 Yes

For data used in differences, see Appendix 1.
SEM, standard error of the mean. 95% CI, 95% confidence interval for mean difference; t, one-sample t statistic at d.f. = 25; P, two-sided P value from

t-test; fixed bias, if P � 0.05 or 95% CI does not include 0.
See Fig. 2 for graphical display.

Table 4 Outcomes of ordinary least products regression versus the method
of differences

Panel OLP regression Method of differences

(a) No bias No bias
(b) Proportional bias Proportional and fixed bias
(c) Fixed bias Fixed bias
(d) Proportional and fixed bias Proportional and fixed (just) bias

OLP, ordinary least products.

Table 5 Outcomes of analysis of differences in terms of 95% limits of
agreement (95% tolerance limits for population of differences)

Difference d
–

± 95% tolerance 95% tolerance limits 
limits for population for population

(a) (A1 – B) –0.38 ± 19.16 –19.55–18.78
(b) (A2 – B) –30.50 ± 18.82 –49.32 to –11.68
(c) (A3 – B) 32.62 ± 19.16 13.45–51.78
(d) (A4 – B) –4.10 ± 18.82 –22.92–14.72

For raw data, see Appendix 1.
d
–
, mean difference. The formula for 95% tolerance limits for population

is: d
–

– tn —1,2�sd�(1 + 1/n), where tn —1,2� is the two-sided value of the t
statistic, s is the standard deviation of d

–
and n is the number of observations

(n = 26).
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CATEGORICAL VARIABLES

What exactly is a categorical variable? It is when the outcome of
an investigation is measured by assigning it to two or more cate-
gories. The categorical scales may be unordered (as in eye colour
or taste sensation) or ordered. A good example of the latter is the
categorization of the severity of heart failure according to the pre-
scription of the New York Heart Association (NYHA) or the
Canadian Cardiovascular Society (CCS), both of which use five-
point, ordered rating scales.8 Is there a sharp separation between 
categorical and contnuous scales? In theory, there is. Obviously,
blood pressure is measured on a continuous scale. Equally obviously,
the presence or absence of a feature such as alive or dead is expressed
on a two-category scale. However, there is a grey area in between
these extremes. What about rating scales in which there are eight,
16 or 24 ordered categories? If there are eight categories, the scale
is best regarded as categorical. If there are 24 or more,9,10 most would
regard this as a continuous scale (although the distribution of 
values is often far from normal). But, what if the maximum range
of categories is 12, as in the composite Glasgow Coma Scale?11 I
have no clear answer to this dilemma, other than to collapse the 
number of categories to three, four or six if the number of obser-
vations is less than, say, 200.

The main interest of experimental and, especially, clinical
pharmacologists and physiologists is in ordered categorical variables,
measured on scales in which there are more than two categories.
This will be the focus of the exposition that follows.

The kappa statistic

This was described by Cohen in 1960 as a method for comparing
raters when the rating scale is unordered.12 Cohen later extended
this to ordered scales.13 There are monographs on how to calculate
and evaluate the kappa statistics14–16 and an excellent review 
article by Kramer and Feinstein.17 Calculation of both the
unweighted (K) and weighted (Kw) kappa statistics is designed 
to take into account the effects of chance. Originally, the kappa 
statistic was of interest mainly to social scientists, but, increasingly,
it has been embraced by clinical scientists. A search of PubMed

(National Library of Medicine, Washington DC; http://www.ncbi.
nlm.nih.gov/PubMed/) for the term kappa + statistic shows that from
less than five citations annually 20 years ago, these reached approxi-
mately 80 annually in 1996–2000 (Fig. 3). This increase seems to
be because clinical scientists have been slow to discover the kappa
statistic but, having done so, have embraced it enthusiastically,
although not always wisely.

Cohen’s original intention was that the kappa statistic(s) could
be used to compare two raters who use the same categorical scale,
rather than to compare methods of rating.12,13 It is vital to recognize
that for the kappa technique to have any value in analysing a study,
the two raters must always be the same individuals. It has no place
in, for instance, evaluating the performance of peer reviewers of
manuscripts or grant applications, when the pairs inevitably consist
of different individuals on each occasion18 (although Fleiss14 seems
to condone this practice). It is also doubtful whether it has a place
in comparing methods of categorical measurement. This is because
the measurements (ratings) are almost always subjective, in the sense
that they are value judgements made by human raters. In a rapidly
changing clinical setting, it is impossible to believe that an individual
rater could apply two different methods of rating to the same 
subject within a short space of time without bias. It is more 
credible that a rater could re-evaluate subjects at, say, an interval 
of a week or month. That is, it may have a place in evaluating the
reproducibility of a single rater’s scores.

What if there are more than two raters on the same subject? Fleiss
describes a rather complex way of using a modified kappa statistic
to evaluate the association between several raters14 but, in my view,
it is best to stick with just two.

The main focus of this review will be on the ordered kappa stat-
istic (Kw) and alternatives to it, although it will be necessary to 
consider first the original, unweighted kappa statistic (K). It should
be said, in advance, that the argument will be that the kappa 
statistic provides no useful information about the presence or 
absence of bias.

First, how the results of a study to compare two raters are set out
must be described: it is as observed frequencies of occurrence of
the categories according to rater, in an r � c table in which r = c
(Table 6). It should be noted that the diagonal of cells from top left
to bottom right is described as the agreement diagonal, because only
on this diagonal do the two raters agree completely. In addition, the
expected frequencies of occurrence for each cell in the table are 
calculated by a formula that will be familiar to those who use the
Chi-squared statistic and which is given in Appendix 2. Because 

Fig. 3 Articles in the biomedical literature in which the kappa statistic was
used, 1981–2000, by year. Data from PubMed (National Library of
Medicine, Washington DC; http://www.ncbi.nlm.nih.gov/PubMed/).

Table 6 Stereotype 3 � 3 table for kappa test of association: observed cell
frequencies

Rater A Row
1 2 3 total

Rater B
1 a b c a + b + c
2 d e f d + e + f
3 g h i g + h + i

Column total a + d + g b + e + h c + f + i N

Expected cell frequency for a given cell is calculated as ((Row
total)/(Column total)/n).

Agreement diagonal, a, e, i.
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the simplest formulations of the kappa statistics make use of the
observed and expected proportions for each cell (po and pe), the 
formulae for these are also given in Appendix 2.

The unweighted kappa statistic (K)

This is designed to be used only in cases in which the categorical
variables are unordered. Its formula is based on po and pe, where po

is the observed proportion and pe is the expected proportion:

K = (�po – �pe)/(1 – �pe) [3]

where the summing of po and pe (�po and �pe, respectively) is done
only for the cells on the agreement diagonal.

The values of K can range from – 1 to + 1, although, in practice,
they range from 0 (when agreement is no better than chance) to +
1 (perfect agreement). A value of – 1 can occur only under very 
special conditions.16

The weighted kappa statistic (Kw)

This is designed to be used in cases in which the categories are
ordered (although it has sometimes been used for unordered 
catgories). It introduces the notion of a weighting factor, w. This is
usually intended to exact a greater ‘penalty’ for greater degrees of
disagreement. The formula is:

Kw = 1 – ((�(w)(po)across all cells)/
(�(w)(pe)across all cells)) [4]

There are several systems of weighting. Cohen originally described
an arbitrary weighting system, in which the investigator decides 
arbitrarily which disagreements should attract the worst ‘penalty’.13

It is rarely used nowadays. Another is the linear weighting system,
in which the weights for cell proportions from the agreement diag-
onal outwards in each direction progress linearly: 0, 1, 2, 3, 4 and
so forth. Paradoxically, Fleiss described an inverse weighting 
system,14 under which cells on the agreement diagonal are assigned
the maximal weight, while disagreements are assigned less than 
maximal weightings. It is hard to see merit in this. The most 
popular system is the quadratic weighting system, in which the
weights for cell proportions from the agreement diagonal outwards
progress geometrically: 02, 12, 22, 32, 42 and so forth. This quadratic
system provides the greatest leverage to entries in cells that are
remote from the agreement diagonal. In all the weighting systems
(except Fleiss’ inverse system), the weight for cells on the agree-
ment diagonal is w = 0. Thus, the value of Kw depends only on the

off-diagonal entries. The greater the value of (�(w)(po))/(�(w)(pe))
in eqn 4, the smaller the value of Kw.

As in the case of K, the values of Kw can range from – 1 to + 1.
This is reminiscent of the product–moment correlation coefficient.
In fact, an important property of Kw (quadratic weighting) is that it
corresponds to one form of the intraclass correlation coefficient.19

Evaluating the kappa statistics

There are three different approaches to this matter: (i) applying 
classical statistical theory; (ii) an empirical approach; and (iii) the
use of permutation.

Asymptotic CI and P values
This approach depends on the assumption that K and Kw are approxi-
mately normally distributed. It provides reasonably accurate values
for 95% CI and P provided the number of observations is sufficiently
large (for instance, > 100). The asymptotic approach depends on 
estimating asymptotic standard errors (ASE). For estimating CI, the
formulation is (ASE1). A simple method of doing this for K was
described by Cohen,12 a better method by Fleiss et al.14,20 However,
for testing the null hypothesis K = 0, a different formulation is
required (ASE0). Cohen’s original formulation of ASE0

12 has since
been improved on by others.14,16,20

Different formulations of ASE are needed for evaluating Kw.
Again, a simple method was described by Cohen.13 Subsequently,
more complex but theoretically more accurate methods were
described by Fleiss and others.14,16,20

An empirical approach
A very simple method for evaluating agreement for the unweighted
kappa statistic was proposed by Landis and Koch.21 It is as 
follows: K < 0.00, poor; K = 0.00–0.20, slight; K = 0.21–0.40, fair;
K = 0.41–0.60, moderate; K = 0.61–0.80, substantial; K = 0.81–1.00,
almost perfect.

This approach is mentioned only to condemn it. It has no sound
theoretical basis and can be positively misleading to investigators.
It is regrettable that it is reproduced by Fleiss14 and by the authors
of several general texts of statistics (unnamed).

Exact P values
A much safer approach, if only because it caters equally well for
large and small samples, is to use permutation to arrive at ‘exact’
P values. According to this technique, two-sided P for the null
hypothesis that K or Kw = 0 when all possible permutations of the
cell entries are listed, with the proviso that the marginal totals remain
the same as those oberved, is:

(No. values for K � that observed, in either direction)/
(Total no. permutations)

The 95% ‘exact’ CI corresponds to the 2.5 and 97.5% percentiles
of the listed total number of possible permutations. StatXact 5 (Cytel
Software, Cambridge, MA, USA) will execute this for P values and
CI and provides for all the weighting systems mentioned above.

Detecting bias

The emphasis of this review has been on detecting bias. The kappa
statistic cannot do this. The correspondence of Kw to a correlation
coefficient invites this conclusion. The examples of Tables 7,8 
confirm it.

Table 7 Hypothetical 3 � 3 table of frequencies for ordered categories from
comparison of two raters

Rater A Row
I II III total

Rater B
I 5 2 1 8
II 2 5 3 10
III 1 2 5 8

Column total 8 9 9 26

Value of weighted kappa statistic (quadratic weighting), Kw = 0.485 (exact
two-sided P = 0.020).

Bias by method of modified McNemar or single binomial tests, exact two-
sided P > 0.999 (no bias).
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Bias between two raters in this context means that one gives 
consistently higher (or lower) ratings than the other. In Table 7, there
is disagreement between raters, but this is distributed more or less
evenly between Rater A and Rater B. Quadratic Kw = 0.485 (exact
two-sided P = 0.020), indicating reasonable agreement. However, in
Table 8, it is clear that Rater A consistently gives higher ratings than
Rater B. Yet, Kw = 0.519 and exact two-sided P = 0.002. On the face
of it, on the data of Table 8 the agreement between raters is better
than in Table 7. In Table 9, it is clear that the more ‘leverage’ that
is exerted by the weighting system, the greater is the value of Kw.
This is absurd.

The existence of this paradox has been recognized for at least 
10 years. The solution that has been most often proposed is to use
log-linear modelling to analyse the outcome of rater comparison
studies.22–24 However, the outcome of log-linear modelling is 
difficult for biomedical investigators and readers of their papers 
to understand, because they are used to simple outcomes such as 
P values or CI. There are simpler methods that are easier to 
execute and more readily comprehensible.

Simple methods for detecting bias

The procedures described here are based on the premise that if there
is bias between raters, it will be reflected in an inequality of observed
frequencies in the off-agreement diagonal entries in the table of fre-
quencies. Under a null hypothesis of no bias, it would be expected
that the sum of the entries in the diagonals at from 1 to n removes
from the agreement diagonal will be equal for the upper right and
lower left diagonals.

This can be explained by two hypothetical examples in which the
performance of two raters is compared, in 3 � 3 ordered tables
(Tables 7,8). What method(s) can be used to detect bias?

Modified McNemar test
Kramer and Feinstein suggested a modification of the McNemar
test.17 Their formula for this was:

�2 = (�UR – �LL)2/(�UR – �LL) at d.f. = 1

where �UR is the sum of the entries in the upper right off-
agreement diagonal and �LL is the sum of the entries in the 
lower left off-agreement diagonal.

The attached P value can be obtained by reference to the 
Chi-squared distribution. However, it is much safer to obtain it 
by exact permutation (StatXact 5; Cytel Software), from which 
P > 0.999 for Table 7 and P = 0.012 for Table 8 (see Table 8).

In view of the gross asymmetry (bias) in Table 8, P = 0.012 is a
rather disppointing outcome. It could be argued that if the weighted
kappa statistic Kw is used to test for association (see above), then it
is proper to use the same weighting system in performing the 
modified McNemar test. Thus, if quadratic weighting is used, as it
was for Kw in the example of Table 8, so that �URw becomes 12
and �LLw becomes 1, exact P from the McNemar test is P = 0.0003
(see Table 9). However, critics have argued that if one were to use
a sufficently steep weighting system, for instance 010, 110, 210 and
so forth, then even the smallest difference between �UR and �LL
would reveal bias. This argument is irrefutable, so that the only safe
course to follow is not to use weighted entries and to increase the
power of the test by increasing group (sample) size.

Exact single binomial test
This had been my first thought as a method for detecting bias. It
tests whether the ratio between �UR and �LL is 0.5.14 In its 
exact form, it gives precisely the same exact P values as the 
modified McNemar test, so that it is neither better nor worse and 
is susceptible to the same criticisms about choice of weighting 
system.

Commentary

It is clear that even when the weighted kappa statistic is used
appropriately, it is incapable of detecting bias between two raters.
This is not surprising, in view of the fact that the quadratic Kw

corresponds to the intraclass correlation coefficient and that when
variables are continuous the product–moment correlation coefficient
is also incapable of detecting bias.

Table 9 Values of kappa and P for bias for the data of Tables 7 and 8

Type of kappa Value of P for P for McNemar test P for McNemar test 
kappa kappa = 0 for bias (asymptotic) for bias (exact)

Data of Table 7
K (unweighted) 0.364 0.013 0.763 > 0.999
Kw (linear) 0.423 0.001 0.782 > 0.999
Kw (quadratic) 0.485 0.020 0.808 > 0.999

Data of Table 8
K (unweighted) 0.385 0.0042 0.0067 0.012
Kw (linear) 0.451 0.0010 0.0023 0.0034
Kw (quadratic) 0.519 0.0019 0.0003 0.0003

Note that the values for kappa for the data of Table 7 (no bias) are consistently smaller than those for the data of Table 8 (gross bias). The corresponding
P values are consistently lower for Table 8 compared with Table 7. Note also the discrepancies between the asymptotic and exact P values for the McNemar
test for bias.

Table 8 Hypothetical 3 � 3 table of frequencies for ordered categories from
comparison of two raters

Rater A Row
I II III total

Rater B
I 5 4 2 11
II 0 5 4 9
III 0 1 5 6

Column total 5 10 11 26

Value of weighted kappa statistic (quadratic weighting), Kw = 0.519 (exact
two-sided P = 0.002).

Bias by method of modified McNemar or single binomial tests, exact two-
sided P = 0.012 (gross bias).
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The simple methods for detecting bias that are described above
are not based on sophisticated statistical theory but, rather, on 
simple logic. Yet, they seem to be effective, not only in detecting
bias, but in doing so in a way that should be intelligible to biomedical
investigators.

One of the important goals of comparing two methods of measure-
ment of continuous variables is to be able to express the size of the
differences in quantitative terms, so that clinical investigators 
and clinicians are in a position to judge whether the magnitude 
of the disagreement allows one method to be substituted for the 
other. Conceptually, it seems to be impossible to do this for the 
situation in which the performance of two raters is compared. All
that can be concluded is that there is, or is not, bias between the 
two raters.
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Table A2 Formulae for cells in r � c tables

Formula

Expected frequency ((Observed row total)
(Observed column total))/N

Observed proportion (po) (Observed cell frequency)/N
Expected proportion (pe) (Expected cell frequency)/N

APPENDIX 2

Table A1 Dataset for example of two continuous variables. Methods A1,
A2, A3 and A4 for indirect measurement of systolic blood pressure versus
Method B, both in mmHg

A1 A2 A3 A4 B

106.0 84.8 139.0 111.2 106.0
100.0 80.0 133.0 106.4 110.0
117.0 93.6 150.0 120.0 110.0
114.0 91.2 147.0 117.6 123.0
135.0 108.0 168.0 134.4 125.0
130.0 104.0 163.0 130.4 131.0
144.0 115.2 177.0 141.6 130.0
122.0 97.6 155.0 124.0 133.0
145.0 116.0 178.0 142.4 137.0
130.0 104.0 163.0 130.4 145.0
137.0 109.6 170.0 136.0 149.0
154.0 123.2 187.0 149.6 145.0
140.0 112.0 173.0 138.4 155.0
152.0 121.6 185.0 148.0 156.0
160.0 128.0 193.0 154.4 154.0
169.0 135.2 202.0 161.6 159.0
154.0 123.2 187.0 149.6 165.0
170.0 136.0 203.0 162.4 167.0
164.0 131.2 197.0 157.6 173.0
180.0 144.0 213.0 170.4 170.0
167.0 133.6 200.0 160.0 156.0
174.0 139.2 207.0 165.6 181.0
185.0 148.0 218.0 174.4 180.0
191.0 152.8 224.0 179.2 188.0
184.0 147.2 217.0 173.6 181.0
191.0 152.8 224.0 179.2 196.0
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