ANALGESICI

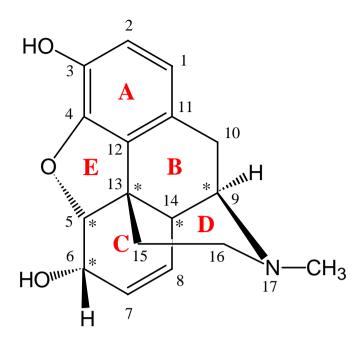
ANALGESICI

Gli analgesici sono farmaci utilizzati nel controllo del dolore ed appartengono a diverse classi:

- FANS (Farmaci antiinfiammatori non steroidei)
- Analgesici narcotici (Morfino simili)
- Anestetici locali
- Farmaci "non oppioidi" con attività analgesica centrale:
 - a. Antidepressivi (Amitriptilina)
 - b. Farmaci per specifiche situazioni dolorifiche
 - es. Carbamazepina (Trigemino) anticonvulsivante

FANS ed anestetici locali hanno un sito d'azione esterno al S.N.C.

ANALGESICI NARCOTICI


Gli **OPPIOIDI** o analgesici narcotici morfino simili comprendono:

- sostanze endogene (encefaline, endorfine, dinorfine)
- sostanze di sintesi o semisintesi

[OPPIACEI sono sostanze contenute nell'oppio con diversa attività farmacologica]

L'OPPIO è il lattice ottenuto dall'incisione delle capsule non mature del Papaver somniferum.
Per essicazione si ottengono i pani di oppio.

MORFINA

La Morfina possiede 5 centri stereogenici (indicati con l'asterisco) e quindi, teoricamente, sarebbero possibili 2^5 =32 stereoisomeri. Le restrizioni di tipo geometrico limitano le possibilità a 16 stereoisomeri. L'enantiomero naturale della morfina è levogiro ed ha contigurazione assoluta: (5R, 6S, 9R, 13S, 14R). L'isomorfina è l'epimero in cui la configurazione assoluta al C-6 è R (ossidrile in posizione b). La morfina destrogira è circa 10.000 volte meno affine e ha un'efficacia circa 100 volte minore dell'antipodo levogiro.

- ⇒ 1803: isolata da parte di un farmacista tedesco (Serturner) e così denominata con un chiaro riferimento mitologico al dio del sonno Morfeo.
- ⇒ 1925: determinazione della struttura (Robinson e Gullard).
- ⇒ 1952: prima sintesi chimica (Gates).
- ⇒ 1952: determinazione univoca della stereochimica (Stork).

Profilo farmacologico della Morfina

I principali effetti sono:

- analgesia
- euforia e disforia (malessere psicologico), sedazione
- depressione respiratoria (causa principale dei decessi da avvelenamento da morfina)
- depressione dei riflessi della tosse
- nausea e vomito
- dipendenza fisica e psicologica
- miosi (costrizione della pupilla)
- costipazione (riduzione della motilità intestinale)
- spasmi delle vie biliari
- stimoli e difficoltà della minzione
- stimolazione del rilascio di istamina con conseguenti vaso-dilatazione, broncocostrizione, arrossamento e prurito

La morfina può essere somministrata:

- per via *orale* (la potenza analgesica si riduce a circa 1/3-1/6 rispetto a quella ottenuta per somministrazione parenterale)
- per via sottocutanea e intramuscolare: l'assorbimento è costante ed efficace con l'inconveniente dell'irritazione dei tessuti
- per via *endovenosa*: è preferita l'infusione lenta per una migliore copertura antalgica ed una diminuzione del rischio di sovradosaggio

Peptidi Oppioidi Endogeni e Sintetici

endogeni

[Leu⁵]encefalina Tyr-Gly-Gly-Phe-Leu

[Met⁵]encefalina Tyr-Gly-Gly-Phe-Met

Dinorfina A Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-

Leu-Lys-Trp-Asp-Asn-Gln

Dinorfina B Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-

Val-Thr

α-Neoendorfina Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys

β-Neoendorfina Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro

β_b-Endorfina Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-

Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile-

Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu

di sintesi

DAMGO [D-Ala²,MePhe⁴,Gly(ol)⁵]encefalina

DPDPE [D-Pen²,D-Pen⁵]encefalina

DSLET [D-Ser²,Leu⁵]encefalina-Thr⁶

DADL [D-Ala²,D-Leu⁵]encefalina

CTOP D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH₂

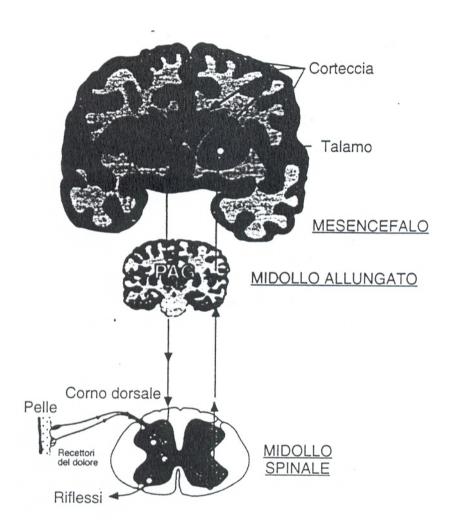
FK-33824 [D-Ala²,N-MePhe⁴,Met(O)⁵-ol]encefalina

[D-Ala²]Deltorfina I Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH₂

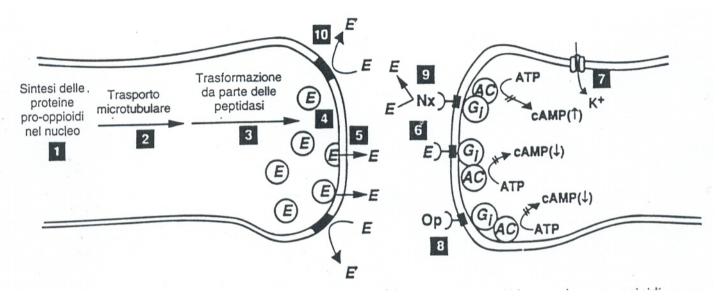
[D-Ala², Glu⁴]Deltorfina Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH₂

(Deltorfina II)

Morficeptina Tyr-Pro-Phe-Pro-NH₂


PL-017 Tyr-Pro-MePhe-D-Pro-NH₂

DALCE [D-Ala²,Leu⁵,Cys⁶]encefalina


```
Met-Encefalina = Tyr-Gly-Gly-Phe-Met
Leu-Encefalina = Tyr-Gly-Gly-Phe-Leu
β-Endorfina = Tyr-Gly-Gly-Phe Met-Thr-Ser-Glu-Lys-Ser¹⁰-Gln-Thr-Pro-Val-Thr-Leu-Phe-Lys-Asn²⁰-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Gly³¹
Dinorfina A(dyn^{1-17}) = Tyr-Gly-Gly-Phe-Leu-Arg-Ile-Arg-Pro-Lys-Lys-Trp-Asp-Asn-Gln
Dinorfina B(dyn^{1-8}) = Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile
Dinorfina(dyn^{1-13}) = Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Tyr-\alpha-Neoendorfina = Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys
β-Neoendorfina = Tyr-Gly-Gly-Phe-Leu-Pro-Lys
```

Posizione dei tratti nervosi interessati dagli oppioidi endogeni nel sistema nervoso centrale

Le endorfine e i recettori degli oppioidi nel corno dorsale del midollo spinale, nel talamo e nelle aree grigie periacqueduttali (PAG) sono connessi con la trasmissione del dolore.

Rappresentazione di una terminazione nervosa encefalica µ

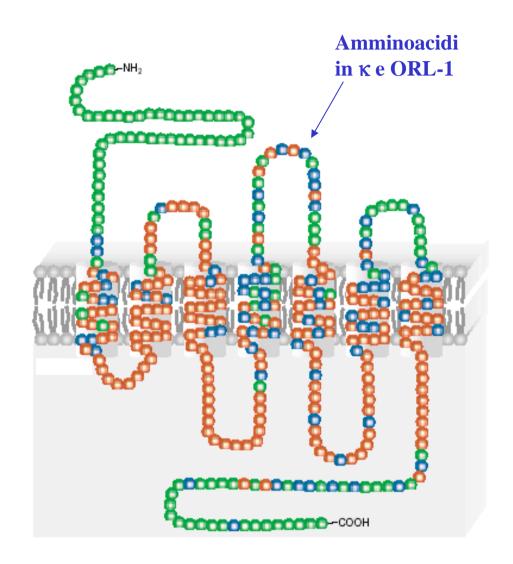
- 1. Le proteine pro-oppioidi vengono sintetizzate nel nucleo cellulare.
- 2. Le proteine pro-oppioidi subiscono trasporto microtubulare al terminale nervoso.
- 3. Gli oppioidi endogeni attivi (E) vengono staccati dalle proteine prooppioidi da parte delle proteine "di processo".
- 4. I peptidi attivi (E) vengono assorbiti e conservati nelle vescicole presinaptiche.
- 5. I peptidi vengono liberati quando i neuroni presinaptici vengono eccitati.
- 6. I peptidi oppioidi endogeni si legano al complesso proteico inibitorio (G_i) che induce inattivazione dell'adenilciclasi, diminuzione del cAMP e
- 7. influsso degli ioni potassio nella cellula. L'effetto complessivo è l'iperpolarizzazione del neurone postsinaptico e l'inibizione dell'eccitazione della cellula.
- 8. Gli oppioidi esogeni (Op) come la morfina si combinano con i recettori oppioidi e simulano l'azione degli (E).
- 9. Gli antagonisti degli oppioidi come il naloxone (Nx) si legano ai recettori e inibiscono in maniera competitiva l'azione degli (E) e degli (Op).
- **10.** L'azione degli (E) viene interrotta da una proteina legata alla membrana, che idrolizza il legame peptidico Gly³-Tyr⁴ dell'encefalina.

RECETTORI OPPIOIDI

Nomenclatura	$\mu = \mathbf{OP}_3$	$\delta = \mathbf{OP}_1$	$\kappa = OP_2$
Ordine di potenza	β-end>dynA>met>leu	met=leu>β-end>dynA	dynA>>β-end>leu=met
Agonisti selettivi*	DAMGO Sufentanile PLO17	DPDPE DSBULET [Dala ²]deltorfina I o II	U69593 CI977 ICI197067
Antagonisti selettivi*	CTAP	ICI174864 naltrindolo TIPP	nor-binaltorfimina
Radioligandi	[³ H]DAMGO [³ H]PLO	[³ H]DPDPE [³ H]TIPP [³ H]naltrindolo	[³ H]69593 [³ H]CI977
Effettori predominanti	cAMP↓ Canali K ⁺ ↑(G) Canali Ca ²⁺ ↓(G)	cAMP↓ Canali K ⁺ ↑(G) Canali Ca ²⁺ ↓(G)	cAMP↓ Canali K ⁺ ↑(G) Canali Ca ²⁺ ↓(G)
Gene	μ	δ	κ
Informazioni Strutturali	398 aa ratto 7TM	372 aa ratto 7TM 372 aa topo P32300 7TM	380 aa ratto 7TM** M380 aa topo 7TM

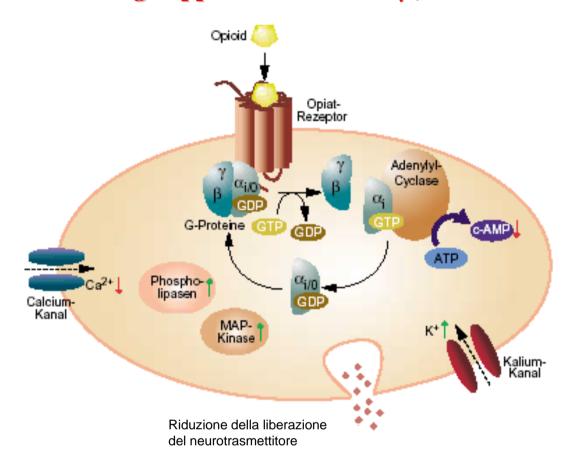
ALTRI RECETTORI O SITI DI LEGAME: E' stata suggerita l'esistenza di sottotipi recettoriali oppioidi μ_1 e μ_2 : i recettori μ_1 hanno alta affinità per molti agonisti ai recettori δ benché DPDPE è una nota eccezione.

L'esistenza di sottotipi recettoriali δ è stata suggerita sulla base di studi *in vivo* utilizzando ligandi δ -selettivi: DPDPE e l'antagonista 7-benzilidene-7-deidronaltressone sono selettivi per i siti δ_1 ; [Dala²]deltorfina II e l'antagonista Naltribene sono selettivi per i siti δ_2 .


Sono stati proposti anche sottotipi recettoriali κ : le arilacetamidi, es. U69593, si legano ad un sottosito dei siti marcati da Etilchetociclazocina (κ_1); κ_2 hanno moderata affinità per l'Etilchetociclazocina, ma non hanno nessuna correlazione funzionale nota; in condizioni di marcatura κ -selettiva il naloxone benzoilidrazone si lega ad una popolazione di siti (κ_3).

LIGANDI ENDOGENI: [Met]encefalica (met), [Leu]encefalica (leu), β -endorfina (β -end), α -neo-dinorfina, dinorfina A (din-A), dinorfina B; alcuni peptidi oppioidi addizionali sono presenti nel cervello.

^{*}Morfina (agonista parziale), nalossone e naltressone sono debolmente selettivi per i sottotipi recettoriali oppioidi μ .


^{**}U69593 ha alta affinità che indica che è simile a κ_1 ; tuttavia la dinorfina A ha bassa affinità.

Omologia di sequenza degli amminoacidi nei recettori oppioidi umani μ , κ e δ

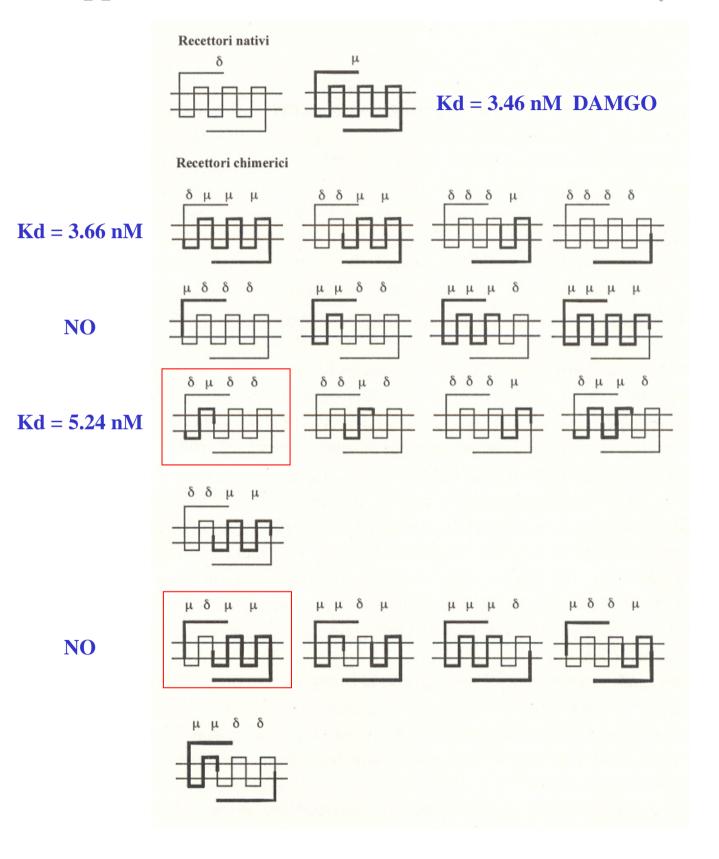
- Palline verdi: tutti i sottotipi recettoriali sono costituiti da differenti amminoacidi in queste posizioni.
- Palline blu: due sottotipi recettoriali hanno amminoacidi identici.
- Palline rosse: Tutti i sottotipi recettoriali hanno identici amminoacidi.

Sistemi effettori nella cellula influenzati dal legame degli oppioidi ai recettori μ, κ e δ

Verde: attivazione; Rosso: inibizione

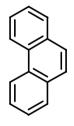
Il legame di un oppioide al suo recettore determina un'associazione delle subunità α , β e γ delle proteine G e si hanno quindi i tre più importanti effetti degli oppioidi:

- 1. Attivazione dei canali del potassio iperpolarizzati (ingresso del potassio nel canale);
- 2. Inibizione dei canali del calcio voltaggio dipendenti (tipo N-, P-, Q-, R-);
- 3. Inibizione dell'Adenilciclasi.


Ci sono altri effetti i cui meccanismi non sono ancora stati spiegati:

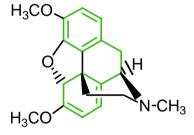
- attivazione delle fosfolipasi (PLH2, PLC3)
- attivazione delle MAP-chinasi
- attivazione di altri canali del calcio voltaggio dipendenti di tipo L
- inibizione di quelli di tipo T
- inibizione diretta del neurotrasmettitore Exozitosina

Azioni e selettività di alcuni Oppioidi ai diversi sottotipi recettoriali


Farmaci orphine ethadone orphine ethadole ethadone ethatanyl ethatany	,	μ	δ	κ
ethadone	Farmaci	μ_1 μ_2		
ethadone	Morphine	/ +++		+
Severphanol	Methadone	+ + +		
Severphanol	Etorphine	+++	+++	+++
entanyl affentanil AMGO autorphanol apprenorphine alloxone altrexone TOP apprenorphine Funaltrexamine aloxonazine alorphine aloxone benzoylhydrazone remazocine by hylketocyclazocine by hylketocyclazocine by hylketocyclazocine by hylketocyclazocine cor-Binaltorphimine altrindole pDPE -Ala²,Glu⁴]deltorphin SLET Peptidi endogeni et-enkephalin eu-enkephalin +++ +++ +++ Peptidi endogeni eu-enkephalin +++ Endorphin +++ +++ +++ Peptidi endogeni eu-enkephalin ++++ Endorphin ++++ Endorphin +++++ Endorphin +++++	Levorphanol	+++		NA
### ### ### ### ### ### ### ### ### ##	Fentanyl	+++		
P	Sufentanil	+++	+	+
P	DAMGO	+++		
P	Butorphanol	P	NA	+++
aloxone altrexone TOP TOP iprenorphine Funaltrexamine aloxonazine alorphine alorphine alorphine alorphine aloxone benzoylhydrazone aloxone benzoylhydrazone	_	P	NA	
iprenorphine	Naloxone		_	
iprenorphine	Naltrexone			
Funaltrexamine aloxonazine alorphine entazocine p ++ albuphine aloxone benzoylhydrazone remazocine +++ thylketocyclazocine P ++ thylketocyclazocine P +++ thylketocyclazocine T	CTOP			
Funaltrexamine aloxonazine alorphine entazocine p ++ albuphine aloxone benzoylhydrazone remazocine +++ thylketocyclazocine P ++ thylketocyclazocine P +++ thylketocyclazocine T	Diprenorphine			
aloxonazine alorphine alorphine P ++ albuphine aloxone benzoylhydrazone remazocine +++ thylketocyclazocine P ++ thylketocyclazocine T thylketocyclazocin	3-Funaltrexamine		_	++
entazocine	Valoxonazine		-	_
entazocine	Valorphine			+
aloxone benzoylhydrazone remazocine	Pentazocine	P		++
aloxone benzoylhydrazone remazocine	Valbuphine			
remazocine chylketocyclazocine by the properties of the properties	_		_	_
50,488 ++- 69,593 ++- biradoline + ++- br-Binaltorphimine altrindole PDPE ++ br-Ala²,Glu⁴]deltorphin ++ Feptidi endogeni fet-enkephalin ++ +++ eu-enkephalin ++ +++ Endorphin +++++++	Bremazocine		++	+++
50,488 ++- 69,593 ++- biradoline + ++- br-Binaltorphimine altrindole PDPE ++ br-Ala²,Glu⁴]deltorphin ++ Feptidi endogeni fet-enkephalin ++ +++ eu-enkephalin ++ +++ Endorphin +++++++	Ethylketocyclazocine	P		+++
biradoline + + + + + + + + + + + + + + + + + + +	150,488			+++
poiradoline + +++ por-Binaltorphimine altrindole PDPE ++ p-Ala²,Glu⁴]deltorphin ++ SLET + ++ Peptidi endogeni let-enkephalin ++ +++ eu-enkephalin ++ +++ Endorphin +++ +++	169,593			+++
or-Binaltorphimine altrindole PDPE ++ -Ala²,Glu⁴]deltorphin SLET ++ -Peptidi endogeni tet-enkephalin ++ ++ -teu-enkephalin ++ ++ ++ ++ -tendorphin		+		+++
altrindole PDPE ++ -Ala²,Glu⁴]deltorphin SLET ++ Peptidi endogeni et-enkephalin ++ eu-enkephalin ++ ++ ++ Endorphin +++ ++ ++	7	_	_	
PDPE -Ala²,Glu⁴]deltorphin SLET + ++ Peptidi endogeni et-enkephalin ++ eu-enkephalin ++ ++ ++ Endorphin +++ +++	Naltrindole	<u> </u>		
P-Ala ² ,Glu ⁴]deltorphin ++ SLET + ++ Peptidi endogeni et-enkephalin ++ ++ eu-enkephalin ++ ++ Endorphin +++ ++	OPDPE		++	
SLET + ++ Peptidi endogeni det-enkephalin ++ ++ eu-enkephalin ++ ++ Endorphin +++ ++				
Peptidi endogeniet-enkephalin+++++eu-enkephalin+++++Endorphin++++++	DSLET	+		
et-enkephalin ++ +++ eu-enkephalin +++ +++ -Endorphin +++ +++				
eu-enkephalin ++ +++ Endorphin +++ +++		++	+++	
Endorphin +++ ++	and the second of the second o			
y news present 4 h				+++
	Dynorphin B		+	+++
	α-Neoendorphin			+++

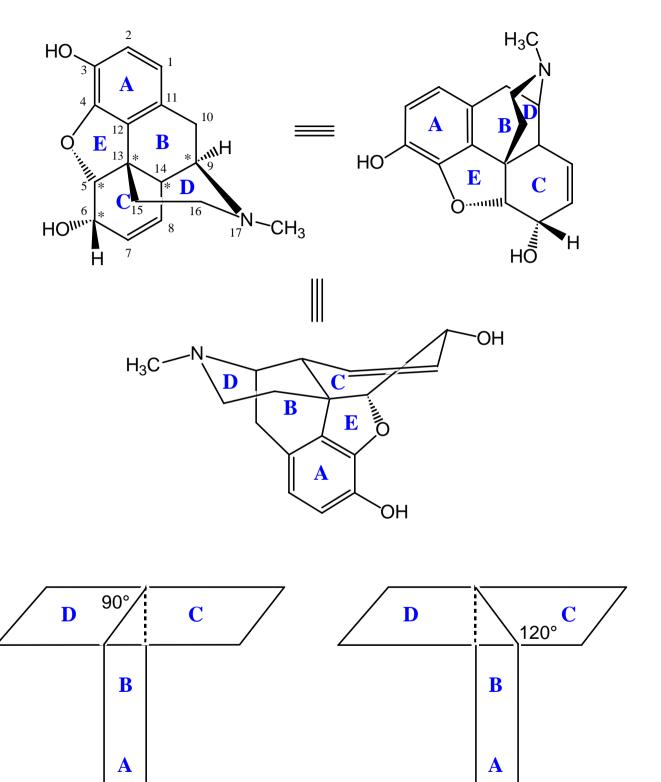
Rappresentazione di una serie di chimerici δ/μ

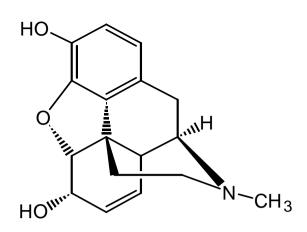
L'oppio contiene un gran numero di alcaloidi, i più importanti sono:


ALCALOIDE	% in peso	ATTIVITA'
MORFINA	9-16 %	Analgesica,
NOSCAPINA	3-10 %	Antitussiva
CODEINA	0.8-2.5 %	Antitussiva
PAPAVERINA	0.5-2.5 %	Spasmolitica
TEBAINA	0.5-2 %	Analgesica (molto debole)

Fenantrene

R = H Morfina R = CH₃ Codeina




Tebaina

1-Benzil-Isochinolina

Noscapina (Narcotina)

Struttura tridimensionale della morfina

Gruppo Funzionale	Variazione Strutturale	Attività Analgesica (morfina = 100)
Ossidrile fenolico (OH)	-OCH₃ (Codeina)	15
	-OC ₂ H ₅ (Etilmorfina)	10
	-O(CH ₂) ₂ -morfolina **	1
Ossidrile alcolico (OH)	OCH, (Etorocodoina)	500
OSSIGNIE AICONCO (OH)	-OCH₃ (Eterocodeina) -C=O (Morfinone)	500
		37
Doppio legame (CH=CH ₂)	-CH ₂ -CH ₂ (Diidromorfina)	120
Gruppo basico (N-CH ₃)	N-H (Normorfina)	5
Gruppo basico (N-Cris)	N-CH ₂ CH ₂ Ph (N-Fenetilmorfina)	1400
	N-R: R=-CH ₂ CH ₂ CH ₃	1400
	N-R: R=-CH ₂ CH ₌ CH ₂ (Nalorfina)	Inversione
	N-R: R=-CH ₂ CH ₌ C(CH ₃) ₂	di attività
	-N+(CH ₃) ₂	1
	(0.13)2	'
Ossidrile fenolico e	-OCOCH₃	
Ossidrile alcolico	-OCOCH₃ (Eroina)	500
Doppio legame e	Riduzione e	
Ossidrile alcolico	-CHOH	600
	-OH → H °°	1000

^{**} Folcodina; ## Diidromorfone; **Diidrodesossimorfina

MODIFICHE STRUTTURALI DELLA MORFINA

1. Riduzione del doppio legame olefinico

2. a- Riduzione del doppio legame olefinico b- Ossidazione dell'ossidrile alcolico

3. Demetilazione all'azoto

a
$$CH_3$$
 CH_3 $COOH$ OOH OOH

I corrispondenti *nor*-derivati sono i precursori di un elevato numero di analoghi strutturali N-sostituiti.

14-OSSI-DERIVATI

R

CH₃ Ossimorfone (*Agonista*)

H₂C-CH₂=CH₂ Naloxone (*Antagonista*)

H₂C Naltrexone (*Antagonista*)

Ossicodone

H₃CO

OH

N—CH₃

(Eucodal)

H₃C N—CH₃

5-Metildiidromorfone (Metopon)

Nalbufina
(Nubain)

κ Agonista/ μ Antagonista
(ha una potenza analgesica
simile a quella della morfina)

Tebaina

$$H_3$$
CO $\frac{19}{CH_2CH_2CH_3}$

Etorfina

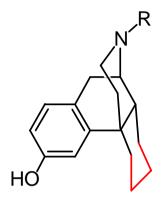
Ha attività analgesica dalle 1000 alle 10000 volte superiore rispetto alla Morfina). Il rapporto di attività 19R/19S è circa 50).

Oripavina (Papaver orientale)

Bufrenorfina

E' un agonista parziale sui recettori μ e un antagonista sui recettori κ. Induce una depressione respiratoria meno severa e riduce i sintomi di astinenza dei tossicodipendenti in fase di disintossicazione. L'isomero 19R ha un profilo agonista, quello 19S ha un profilo antagonista.

Diprenorfina


Ha attività antagonista circa 100 volte maggiore della Nalorfina ed è circa 5 volte più potente del Naloxone. E' usata nel recupero clinico di soggetti tossicodipendenti.

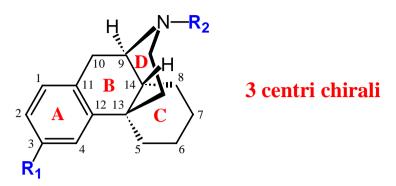
Sintesi dell'Etorfina

$$H_3CO$$
 H_3CO
 H_3C

Semplificazioni molecolari della morfina

Morfina

Morfinani (Levorfanolo)


Benzomorfani (Pentazocina)

Fenilpiperidine (Petidina)

Fenilpropilammine (Metadone)

MORFINANI

Sono derivati tetraciclici della Morfina (scomparsa dell'anello E, della funzione alcolica al C-6 e del doppio legame)

Il morfinano strutturalmente correlato alla morfina ha: C-9 (R); C-13 (S); C-14 (R)

Considerata la restrizione geometrica causata dalla condensazione tra gli anelli B e D (la cui posizione è fissata) sono possibili 4 stereoisomeri:

B/C cis e D/C trans → Morfinani
B/C trans e D/C cis → Isomorfinani

AGONISTI: R₁= OH Levorfanolo

 $R_2 = CH_3$ (Levo-Dromoran)

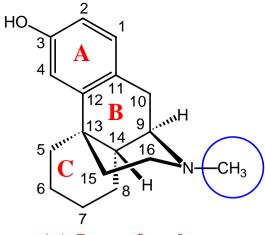
Attività analgesica 4-5

> alla Morfina

AGONISTI PARZIALI: R₁= OH

- antagonisti μ R₂= H₂C-CH=CH₂ Levallorfano

- agonisti k

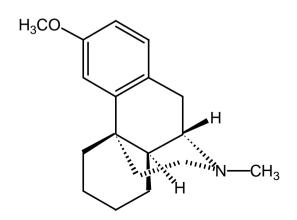

R₂= H₂C Ciclorfano

 $R_2 = H_2C$ Butorfanolo 14-OH (β)

ANTITOSSE: $R_1 = OCH_3$ Destrometorfano

R₂= CH₃ Configurazione opposta

(non ha proprietà analgesiche)

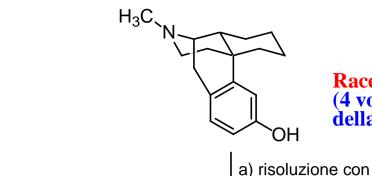

(-)-Levorfanolo 9R, 13R, 14R Attivo per os

(+)-Destrorfano

(-)-3-Idrossi-N-metil-Isomorfinano

(+)-3-Idrossi-N-metil-Isomorfinano

(+)-Destrometorfano Attività paragonabile alla Codeina e minori effetti collaterali


Potenza agonista del Levorfanolo e dei suoi derivati

R	Attività agonista: ED ₅₀ (mg/Kg) ^a
CH ₃ (Racemorfano)	0.7
CH ₃ (Destrorfano) (+)	44.3
CH ₃ (Levorfanolo) (-)	0.48
CH ₂ CH ₂ Ph	0.113
OMe	0.09
NH_2	0.018
$_$ SCH $_3$	0.045
	0.01
	0.019

^a Potenza antinocicettiva nel topo (*Hot plate test*).

Sintesi del Racemorfano

Racemorfano

Racemorfano (4 volte più attivo della morfina)

Acido (+)-Tartarico
b) Metilazione
CH₃

Levorfanolo

(configurazione assoluta della morfina levogira)

Destrometorfano

(isomero destrogiro) E' più attivo della codeina e presenta minori effetti collaterali

Levorfanolo: agonista

E' l'isomero levogiro. Ha un profilo farmacologico simile a quello della morfina, ma una potenza analgesica 6-8 volte superiore. Può provocare nausea e

H₃CO

vomito.

Levallorfano: agonista parziale

N-CH₂-CH=CH₂

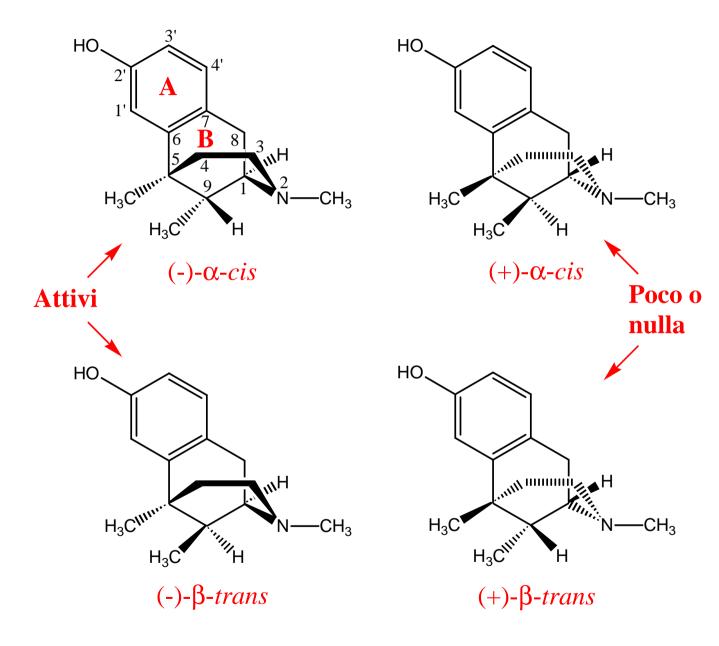
N-CH₂

Ciclorfano: agonista parziale

N-CH₂— Più potente della morfina come agonista ed equipotente al nalossone come antagonista.

Butorfanolo: agonista parziale

Possiede un'azione analgesica simile (4>) alla morfina e provoca una minore depressione respiratoria. Non sopprime la sindrome di


astinenza in morfino dipendenti.

BENZOMORFANI

Sono analoghi triciclici della Morfina nei quali è stato soppresso, rispetto ai morfinani, anche l'anello C.

Attività Antagonista: trans equiparabile a cis

- OH fenolico: ↓ l'attività per eliminazione, spostamento, eterificazione,
- 5-CH₃: é il sostituente più importante. Il gruppo in 9 può essere in α o in β .
- N-R: modificando R si passa da agonisti ad antagonisti. Gli isomeri levogiri sono attivi.

FENAZOCINA: Agonista.

E' 3-4 volte più potente della morfina. La sua tossicità è pari a quella della morfina. Può essere somministrato per os.

PENTAZOCINA:

Agonista parziale (agonista > antagonista).

La potenza analgesica è minore di quella della morfina. Breve durata d'azione, ma effetto antalgico immediato.

L'isomero levogiro è 20 volte più attivo dell'isomero destrogiro. Il potenziale di abuso è scarso e la depressione del centro del respiro è minore della morfina. E' l'unico prodotto della serie utilizzato in clinica.

CICLAZOCINA:

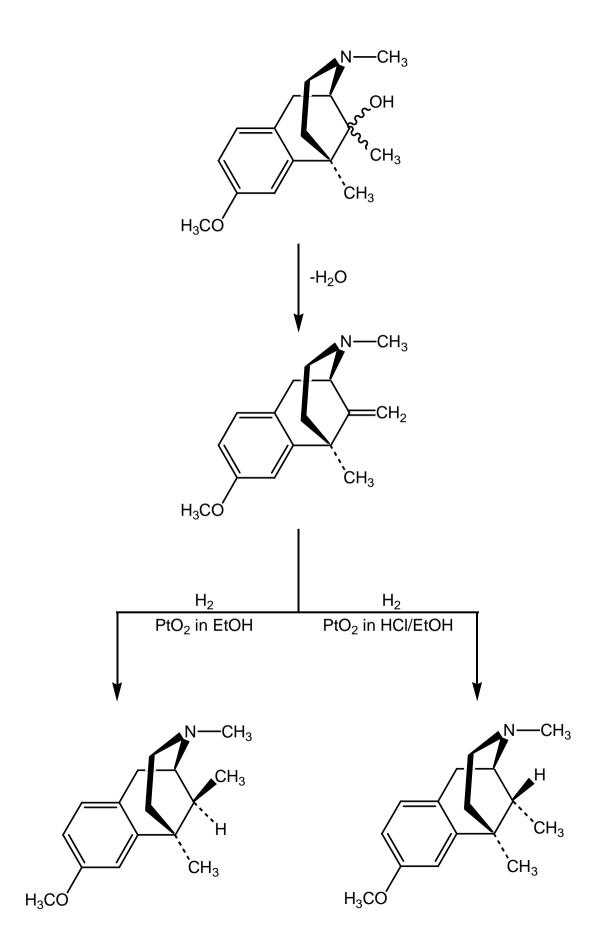
Agonista parziale (antagonista > agonista)

Ha potenza antagonista 100 volte maggiore della nalorfina. La potenza agonista è circa 40 volte maggiore di quella della morfina. L'isomero levogiro è 500 volte più attivo dell'isomero destrogiro. Presenta i seguenti effetti collaterali: ansietà, incubi, allucinazioni (psicotomimetici).

SINTESI

cis
$$\xrightarrow{a) C_6H_5CH_2COCI}$$
 Fenazocina

b) LiAlH₄

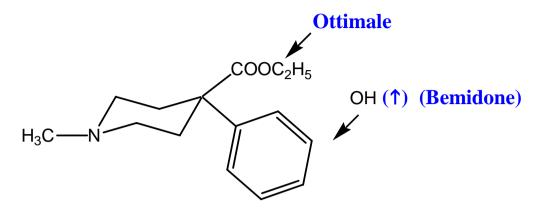

Fenazocina

Pentazocina

BrCH₂CH=C(CH₃)₂ Pentazocina

Cis $\xrightarrow{BrCH_2}$ Ciclazocina

(>)



SINTESI CHIRALE

$$H$$
 CH_3
 H
 CH_3
 CH_3

(S)-6,7-BENZOMORFANI

4-ARILPIPERIDINE

Meperidina o Petidina (1939) (Dolantin)

- E' un agonista dei recettori μ.
- L'attività analgesica fu scoperta casualmente da Schaumann.
- Ha un profilo farmacologico simile a quello della morfina.
- Si somministra per via orale, sottocutanea, intramuscolare, rettale, endovena.
- Onset: circa 10 minuti per somministrazione sottocutanea o intramuscolare.
- Durata d'azione: 3-5 ore.
- La dipendenza si instaura più lentamente.

RELAZIONI STRUTTURA-ATTIVITA'

Regola della morfina

Si hanno proprietà analgesiche quando:

- a) c'è un anello aromatico legato ad un carbonio quaternario.
- b) l'atomo di azoto terziario è ad una distanza pari a due atomi di carbonio.
- 1) Le sostituzioni dell'anello aromatico (con eccezione del 3-OH e 2-CH₃) danno riduzione di attività.
- 2) L'unica modifica del gruppo estereo che provoca un aumento di attività è l'inversione.
- 3) Lo spostamento del gruppo aromatico o del gruppo estereo dalla posizione 4 porta invariabilmente a diminuzione o perdita di attività.

$$CH_3$$
 $OCOC_2H_5$ $OCOC_2H_5$

Il β -racemato è più attivo e tossico dell' α -racemato. L'enantiomero α -(+) è 25 volte più attivo dell'enantiomero α -(-).

$$H_3C$$

Ph-a

OH

 $\Delta E = 0.6-0.7 \text{ Kcal/mol}$

OH

Più importante

Ph-e

Meno importante

H₃C N O O

Ketobemidone

Attivo circa come la Meperidina

Bemidone

Più attivo della Meperidina

$$H_3C$$
 MAO
 H_3C
 H_3C
 H_3C

MPPP

(N-metil-4-fenil-4-propionilossi -piperidina)

5-10 volte più attivo della Meperidina

MPTP

Contaminante Sintomi da morbo di Parkinson

MPP^+

Distrugge i recettori dopaminergici

SOSTITUZIONI ALL'AZOTO

La sostituzione del N-Metile con il gruppo Fenetilico (C₆H₅CH₂CH₂) o similari porta ad un aumento di attività.

Anilerina e Pimodina sono da 3 a 6 volte più attivi della Meperidina, ma hanno breve durata d'azione. Dipendenza e depressione sono di modesta entità.

Fenoperidina è uno dei farmaci più attivi ed è 10 volte più potente della Morfina. L'eutomero ha configurazione S ed è 4 volte più potente dell'enantiomero R.

Per ottenere farmaci che agissero a livello intestinale furono sintetizzati composti formati da Meperidina ed antimuscarinici.

Difenossilato e Loperamide agiscono sui recettori oppioidi dell'intestino causando una riduzione della motilità intestinale.

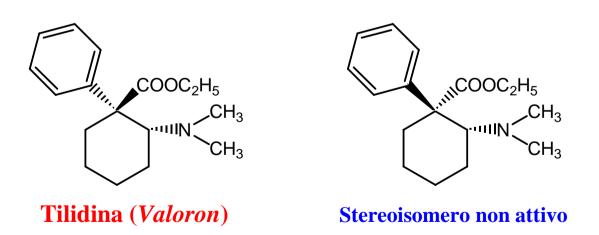
$$R$$
 R
 COC_2H_5

R = H; Fentanile (Sublimaze) $pK_a = 8.4$ Sufentanile $pK_a = 8.0$

R = COOEt; Carfentanile

$$H_3COCO$$
 N
 $COOCH_3$
 N
 COC_2H_5

Alfentanile $pK_a = 6.5$


Remifentanile (*Ultiva*)
Azione ultrabreve

Il Fentanile è un agonista µ 80 volte più potente della Morfina ed è antagonizzato dal Nalossone. Si usa come preanestetico. In neuroleptoanalgesia viene associato ad un neurolettico. Il Carfentanile è 27 volte più potente del Fentanile.

Il <mark>Sufentanile</mark> e l'Alfentanile sono pure molto potenti e selettivi verso i recettori µ e vengono utilizzati in anestesia generale. L'Alfentanile rispetto a Fentanile e a Sufentanile ha un on-set più rapido e una durata d'azione più breve.

Allargamento di anello e altre modifiche

L'Etoeptazina è poco potente; il Meptazinolo è un agonista-antagonista efficace per os e per i.v.

La Tilidina è un potente analgesico μ / κ -agonista/antagonista dotato di efficacia anche per somministrazione orale; minori effetti collaterali rispetto alla morfina.

FENILPROPILAMMINE

Ricerche condotte con lo scopo di ottenere spasmolitici atropino-simili ha portato alla scoperta da parte della ditta Hoechst (1945) del Metadone.

Metadone

(6-dimetilammino-4,4-difenil-3-eptanone)

E' un agonista μ con profilo farmacologico qualitativamente simile alla morfina.

L'enantiomero levogiro [6-(R)] è due volte più attivo della morfina, mentre l'enantiomero destrogiro [6-(S)] possiede 1/10 di attività. Il centro chirale dell'eutomero del metadone [6-(R)] ha la stessa configurazione del corrispondente C-9 della morfina naturale.

Caratteristiche farmacologiche:

- 1- Maggiore attività della morfina quando è assunto per via orale.
- 2- Ha una durata d'azione elevata $(t_{1/2} \ 20 \ ore)$; probabilmente si lega in comparti extravasali dai quali è rilasciato lentamente. Esiste il pericolo di accumulo.
- 3- Sindrome da astinenza blanda e che si instaura lentamente.
- 4- In presenza di metadone la morfina non produce euforia.

Relazioni struttura-attività

1- Sostituzioni sull'anello aromatico

Determinano una riduzione di attività.

2- Modifiche ai sostituenti sull'azoto

Non producono significative variazioni di attività.

Diampromide

3- Spostamento del metile in posizione 6

Lo spostamento del gruppo metilico dalla posizione 6 alla 5 (Isometadone) comporta una riduzione di attività analgesica. L'eutomero ha configurazione 5-(S)-(-).

$$C_{2}H_{5}$$
 $C=0$
 $C_{6}H_{5}$
 $C_{6}H_{5}$
 $C_{6}H_{3}$
 $C_{6}H_{3}$
 $C_{6}H_{3}$

5-(S)-(-)-Isometadone

4- Introduzione di un secondo metile in posizione 5

Il racemato dell'isomero *eritro* è circa 5 volte più attivo del racemato del metadone. Il racemato dell'isomero *treo* è inattivo. L'ipotesi formulata dagli autori è che la *conformazione attiva* del (-)-metadone e del (-)-isometadone corrisponda a quella dello stato solido dell'isomero *eritro* del 5-metilmetadone.

$$C_{2}H_{5}$$
 $C=0$
 $C_{6}H_{5}$
 $C_{6}H_{5}$
 $C_{6}H_{3}$
 $C_{6}H_{3}$
 $C_{6}H_{3}$
 $C_{6}H_{3}$
 $C_{6}H_{3}$

*Eritro-***5-Metilmetadone** (-)**5S**,**6S**: eutomero

$$C_{2}H_{5}$$
 $C=O CH_{3}$
 $C_{6}H_{5}$
 C_{7}
 C_{7}

Treo-5-Metilmetadone (-)5S,6R: inattivo

5- Modifiche del gruppo carbonilico

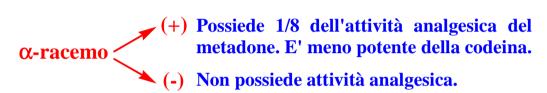
La riduzione del carbonile a gruppo alcolico secondario porta ad una diminuzione di attività. Dei quattro possibili stereoisomeri i più attivi sono l' α -metadolo [(-)-(3S, 6S)] e il β -metadolo [(-)-(3S, 6R)]. L'acetilazione del gruppo alcolic determina un'aumento di attività che si osserva nel LAAM.

$$C_6H_5$$
 C_6H_5
 C

R = H: α-Metadolo

R = COCH₃: LAAM

(levo-α-Acetilmetadolo)


$$C_6H_5$$
 C_6H_5
 C

β-Metadolo

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{Ph} \\ \mathsf{CH-CH_2-N} \\ \mathsf{CH_3} \\ \mathsf{CH_4} \\ \mathsf{CH_5} \\ \mathsf{CH_5$$

Propossifene

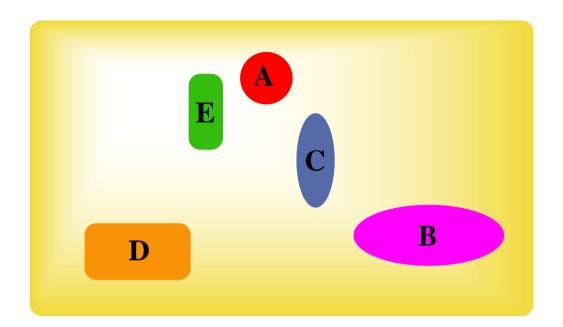
Il Propossifene deriva da ulteriori modifiche del gruppo carbonilico. Il composto presenta due centri chirali e lo stereoisomero che ha interesse farmacologico è $l'\alpha-2(S),3(R)-(+)-Destropropossifene$.

Il Destropropossifene viene utilizzato nel trattamento di dolori da lievi a moderati e viene generalmente associato all'aspirina.

Sintesi del Destropropossifene

Ph—C—CH₂-CH₃

$$H_2C=N CH_3$$


$$CH_3$$

$$CH_3$$

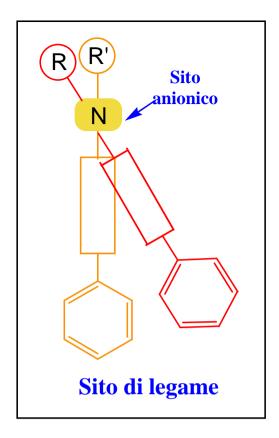
$$Ph—C—CH—CH2-N CH3
$$CH_3$$

$$CH$$$$

Sintesi del Metadone

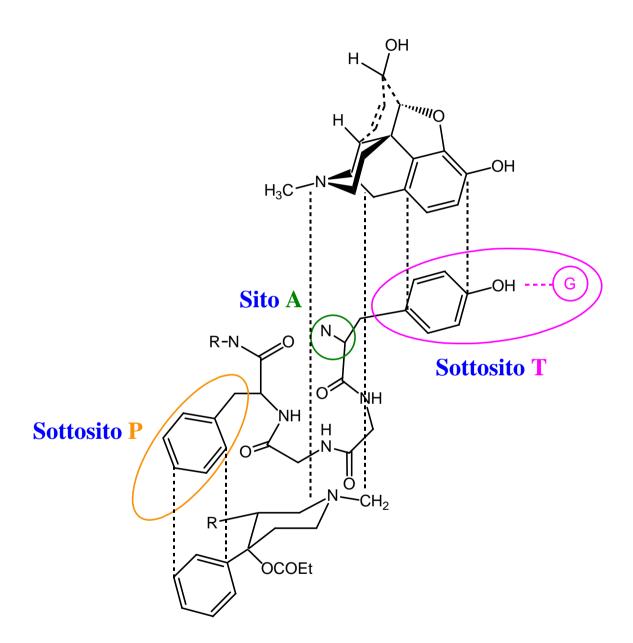
A = sito anionico

B = superficie piana per un nucleo benzenico


 $C = depressione \ per \ gli \ atomi \ C_{15}\text{-}C_{16} \ dell'anello \ piperidinico$

D = sito lipofilo

E = sito per il sostituente all'azoto aminico


Il gruppo basico è in genere un ammina terziaria (7.7<p K_a <9.6). Fanno eccezione i peptidi oppioidi che hanno un gruppo NH $_2$ (Fentanile p K_a = 7.3).

Quindi la cessione di H⁺ dipende da basicità e orientamento.

Modello bimodale di legame contenente un secondo sito lipofilo (P), rappresentato per:

(a) le encefaline o le endorfine; (b) la morfina; e (c) la fenilpiperidina equatoriale α -allilprodina.

Leganti peptidici

Nel 1975 Hughes e Kosterlitz isolano dal cervello di maiale due pentapeptidi:

Tyr-Gly-Gly-Phe-Leu Leu-Encefalina

Tyr-Gly-Gly-Phe-Met Met-Encefalina

Questi peptidi ad attività analgesica hanno un profilo farmacologico simile a quello della Morfina ed i loro precursori sono:

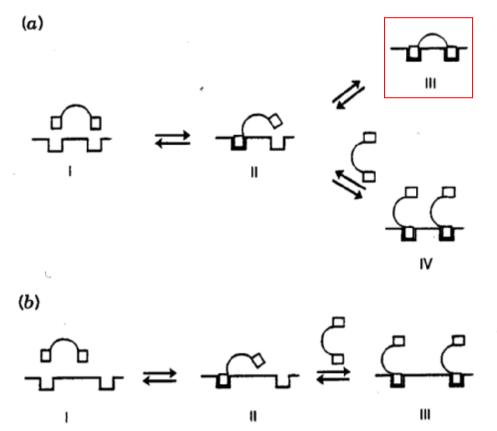
Pro-oppiomelanocortina (POMC) \longrightarrow ACTH, γ -MSH, β -LPH

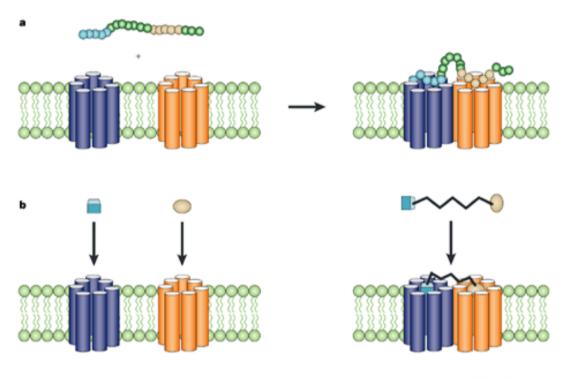
B-endorfina

Pro-encefalina A — Met-Enc

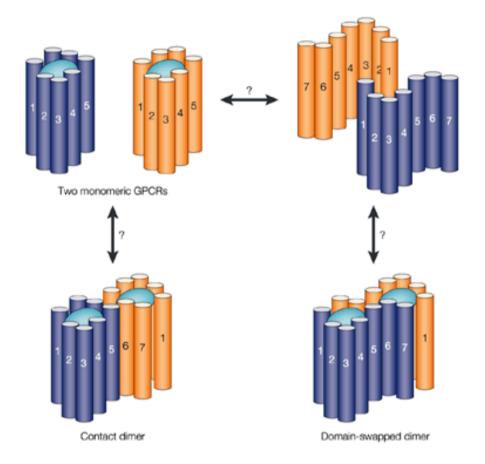
Pro-dinorfina A > 7 peptidi (Leu-Enc + Dinorfina)

Sono stati caratterizzati e successivamente clonati tre tipi di recettori degli opioidi: μ , κ , δ che probabilmente sono ulteriormente suddivisibili in sottoclassi (δ_1 , δ_2 , μ_1 , κ_1 , κ_3). Sono tutti recettori <u>accoppiati alle proteine G</u> quindi possiedono sette domini transmembranali.

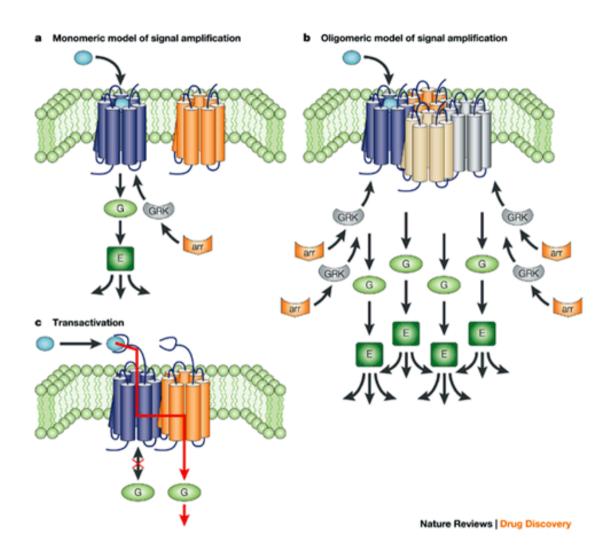

Il meccanismo principale di trasduzione del segnale è l'<u>inibizione dell'adenilato ciclasi</u> e quindi la riduzione della concentrazione di cAMP.


I recettori degli opioidi sono localizzati sia nel SNC sia in tessuti periferici.

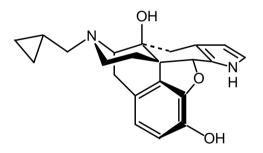
Nei tessuti periferici mediano alcuni effetti degli opioidi quali: <u>inibizione della motilità intestinale</u> e <u>l'analgesia</u> quando si hanno processi infiammatori.

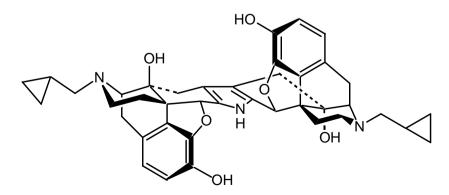

Obiettivi della ricerca

Realizzazione di composti a struttura peptidica e nonpeptidica selettivi per i recettori κ e δ . In tale modo si possono ottenere farmaci con effetti collaterali, tipici della morfina e dei composti morfino-simili, minori o nulli. Gli effetti collaterali da eliminare sono: 1) dipendenza fisica, 2) depressione respiratoria, 3) euforia, 4) inibizione motilità intestinale.



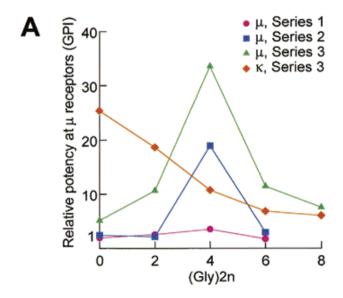
Nature Reviews | Drug Discovery

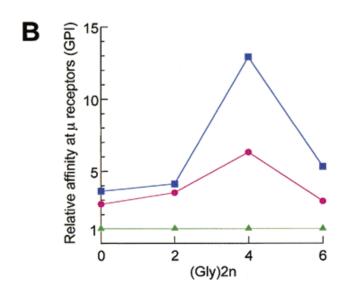

Nature Reviews | Drug Discovery


 $X = -(CH_2CH_2O)_2CH_2CH_2-$ (TENA)

κ-antagonista

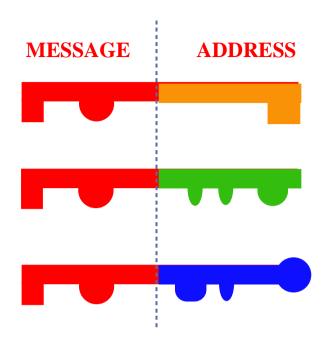
 $\begin{array}{l} \textbf{X} = \text{-}(\text{COCH}_2\text{NH})_n \text{COCH}_2\text{CH}_2\text{CO}(\text{NHCH}_2\text{CO})_n} \\ \\ \textbf{n} = 2 & \mu\text{-antagonista} \\ \\ \textbf{n} = 0 & \kappa\text{-antagonista} \end{array}$


Antagonista non selettivo



Norbinaltorfimina (norBNI)

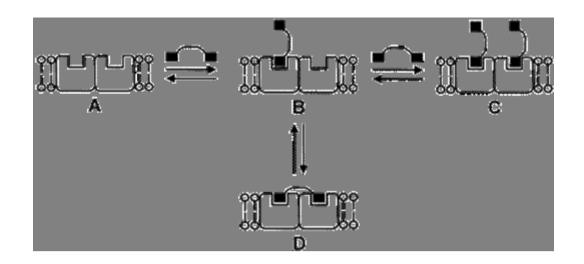
Potente antagonista κ-selettivo

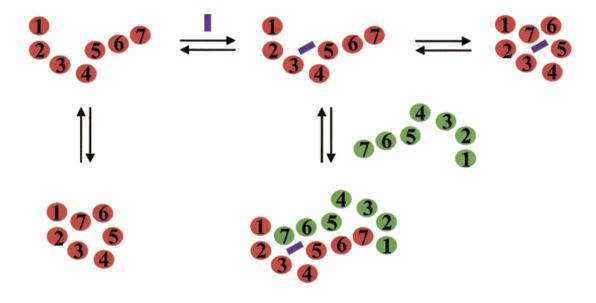

- 1 (serie 6β), R = CH₃
- 2 (serie 6α), $R = CH_3$
- 3 (serie 6 β), R = CH₂CH(CH₂)₂

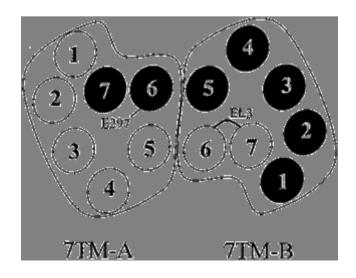
L'isomero 4 ha una potenza che è 1/5 del composto 1 L'isomero 5 ha una potenza che è 1/30 del composto 3

Ipotesi "message-address"

Negli ormoni peptidici vi sono:

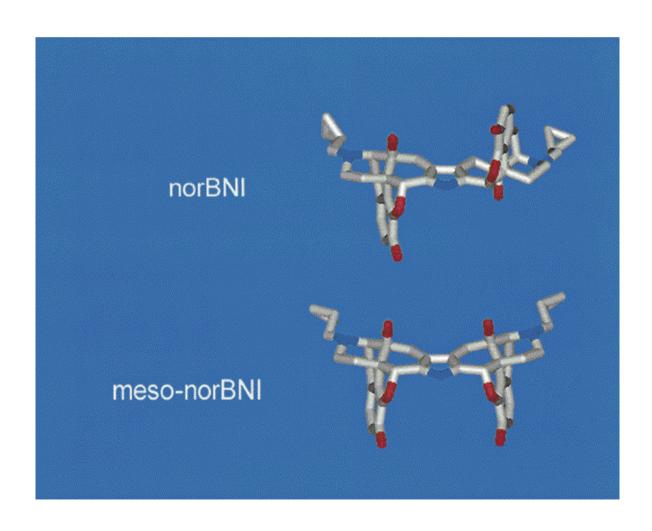

- elementi essenziali all'attività <u>message</u>
- elementi che permettono di discriminare i vari recettori <u>address</u>


Peptide δ-selettivo


M R =
$$CH_2$$

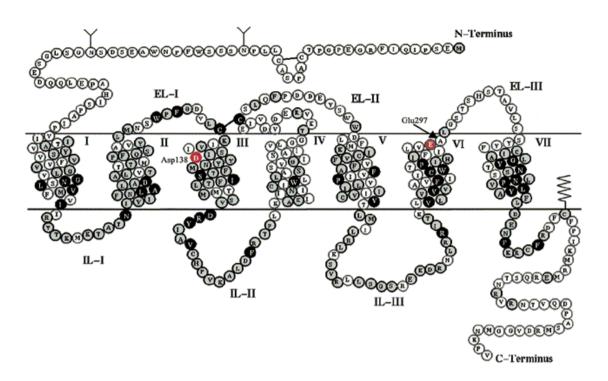
Naltrindolo

Antagonista δ -selettivo

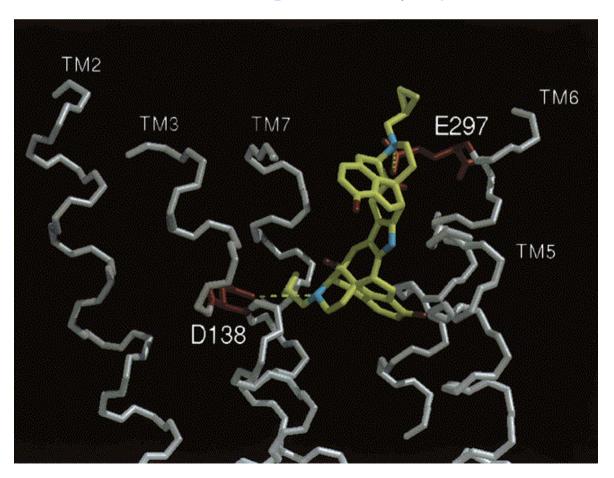


Il meso-norBNI è più potente del norBNI

Antagonista κ-selettivo



Ridotta potenza e selettività κ


Attività e selettività κ simile a norBNI

- 1 R = H Natrindololo
- 2 $\mathbf{R} = NH(C=NH)NH_2$
- 3 $\mathbf{R} = NH(C=N-CN)NH_2$

Il Natrindololo (1) è un antagonista δ-selettivo. L'inserimento sul sistema aromatico di un gruppo basico (composto 2), protonato a pH fisiologico, lo trasforma in un antagonista κ-selettivo. Il corrispondente composto non basico 3 è 30 volte meno attivo del composto 2.

 κ : Glu297 (TM 6); δ: Trp284 (TM 6); μ : Lys303 (TM 6)

LIGANDI PEPTIDOMIMETICI μ (OP₃) SELETTIVI

Omefentanile

Affinità di binding sui recettori oppioidi μ , κ , e δ , dell'omefentanile e composti di riferimento

	K _i (nM)				
Composto	μ^a	κ^{b}	δ^{c}	κ/μ	δ/μ
Morfina	8	69	684	8.5	85
Fentanile	4	197	1.035	49.5	258
Omefentanile	0.8	-	183	-	220
Sufentanile	0.19	37.8	25 ^d	198	131 ^e

^a[³H]DAMGO. ^b[³H]U69,593. ^c[³H]DADLE. ^d[³H]DPDPE. ^eK_i [³H]DAMGO/K_i [³H]DPDPE.

Peptidi opioidi

Derivati della Proencefalina

Leu-encefalina Tyr-Gly-Gly-Phe-Leu

Met-encefalina Tyr-Gly-Gly-Phe-Met

Met-encefalina-Arg⁶-Phe⁷ Tyr-Gly-Gly-Phe-Met-Arg-Phe

Met-encefalina-Arg⁶-Phe⁷-Leu⁸ Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu

• Derivati della Prodinorfina

Dinorfina A Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln

Dinorfina B Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-Val-Val-Thr

α-Neoendorfina Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys

β-Neoendorfina Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro

• Derivati della Proopiomelanocortina

β-endorfina Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu-Phe-Lys-Asn-Ala-Ile-Ile-Lys-Asn-Ala-Tyr-Lys-Lys-Gly-Glu

- 1. Realizzazione di peptidi ad attività analgesica stabili e possibilmente privi di effetti secondari indesiderati.
- 2. Realizzazione di peptidi agonisti selettivi verso i recettori μ o κ o δ .

Importanza dei vari amminoacidi sulle selettività µ

 $Tyr^1 \longrightarrow non può essere sostituito in quanto contiene due gruppi essenziali all'attività analgesica (OH fenolico ed <math>NH_2$).

 $Gly^2 \rightarrow$ è rimpiazzabile con amminoacidi a configurazione opposta (maggiore stabilità).

Gly³ → non può essere sostituita.

Phe⁴ →è molto importante, ma non indispensabile (anello aromatico).

Met⁵/Leu⁵ — non è essenziale perché il tetrapeptide è pure attivo.

HO H₂N
$$H_2$$
N H_3 H_4 N H_4 N

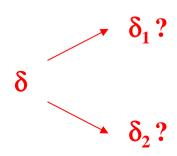
FK 33824

Sindifalina-25

HO CH₃NH N CH₃
$$\rightarrow$$
 Selettività μ

LY 164929

RECETTORI OPPIOIDI


 δ (da vas deferens) - OP_1 (1° clonato)

La distribuzione dei recettori oppioidi δ è preminente nelle strutture cerebrali evolutivamente più recenti (bulbo olfattivo, neopallio, nucleo caudato, putamen), mentre è relativamente povera nel mesencefalo e midollo allungato.

I recettori oppioidi δ esercitano un ruolo nella regolazione dei processi di:

- analgesia
- coordinamento motorio
- motilità intestinale
- olfatto
- respirazione
- funzione cognitiva
- stato emotivo

Gli agonisti selettivi, oltre all'azione antinocicettiva, incrementano l'attività motoria e inducono effetti antidepressivi. Producono però depressione respiratoria.

PEPTIDI PRESENTI NEI MAMMIFERI

Encefaline [Met⁵]encefalina Tyr-Gly-Gly-Phe-Met

[Leu⁵]encefalina Tyr-Gly-Gly-Phe-Leu

PEPTIDI PRESENTI NEGLI ANFIBI

Deltorfine A: deltorfina, dermencefalina

Tyr-D-Met-Phe-His-Leu-Met-Asp-NH₂

B: deltorfina II

Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH₂

C: deltorfina I

Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH₂

Affinità di binding e selettività dei peptidi endogeni δ-selettivi								
	Affinità μ	Affinità δ	Affinità κ	Selettività				
		K _i (nM)		K_i^{μ}/K_i^{δ}				
Struttura	[³ H]DAMGO	[³ H]DADLE	[³ H]BREM					
[Met ⁵]encefalina	9.5	0.91	4.442	10.43				
[Leu ⁵]encefalina	19	1.2	8.210	15.83				
	[³ H]DAMGO	[³ H]DADLE	[³ H]EKC					
Morfina	1.8	90	317	0.02				

AGONISTI δ

Le principali strategie nello sviluppo di analoghi selettivi sono state:

1- Sostituzione, eliminazione o addizione di AA naturali o artificiali.

Molto importanti: Tyr¹, Gly³ e Phe⁴

- 2- Progettazione di ligandi bivalenti che contengono due strutture peptidiche separate da uno spaziatore di opportuna lunghezza.
- 3- Incorporazione di costrizioni conformazionali attraverso ciclizzazioni del peptide o introduzione di analoghi di AA conformazionalmente bloccati.

Legante bivalente selettivo:

Tyr-D-Ala-Gly-Phe-NH-C
$$_6$$
H $_{12}$ -NH-Phe-Gly-D-Ala-Tyr
$${\bf K_i}^{\mu}/{\bf K_i}^{\delta}=91$$

COMPOSTI δ-SELETTIVI

AGONISTI

Tyr-DAla-Gly-Phe-DLeu

DADLE

 ${K_i}^\mu\!/{K_i}^\delta = 6.7$

Tyr-X-Gly-Phe-Leu-Thr

X = D-Ser DSLET

X = D-Thr DTLET

> selettività di DADLE

X = H DPDPE

 $X = Cl [Phe(p-Cl)^4]DPDPE$

> potenza e selettività

Tyr-DAla-Phe-Glu-Val-Val-GlyNH₂

[D-Ala2]deltorfina II

ANTAGONISTI

$$(Aib = -NHC(CH3)2CO-)$$
ICI 174,864

$$K_i^{\mu}/K_i^{\delta} = 128$$

Naltrindolone (NTI)

10³> ICI 174,864

 $NH \rightarrow O$

Naltrinben

binding >

potenza <

 $NH \rightarrow N-CH_3$

Potente

antagonista δ

NTI
$$\mu/\delta = 41$$

$$\kappa/\delta = 353$$

BNTI meno potente di NTI

$$\mu/\delta = 131$$

$$\kappa/\delta = 208$$

RECETTORI

K (da Keto-chetociclazocina) (Martin 1976) - OP₂

Sono presenti nelle corna dorsali del midollo spinale e nel cervallo sono presenti nell'area periacqueduttale grigia, nei nuclei talamici ed ipotalamici.

Svolgono un ruolo importante nel ricevere e processare le informazioni dolorifiche afferenti primarie. Nel cervello integrano le informazioni dolorifiche ascendenti ed inibiscono le sensazioni dolorifiche che scendono al midollo spinale.

I recettori oppioidi κ sono coinvolti nella regolazione dei processi di:

- analgesia
- diuresi
- regolazione appetito (attivazione ↑ appetito)
- secrezioni neuroendocrine

AGONISTI κ

Gli agonisti κ causano sedazione a concentrazioni minori rispetto agli agonisti μ .

VANTAGGI: - minore crisi da astinenza

- No depressione respiratoria

- No costipazione

SVANTAGGI: - disforia

- effetti psicotomimetici

AGONISTI K

Dinorfina A (1-17) Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln

 $\mu/\kappa = 7$ Eys Let Lys Tip Tish Given $\mu/\delta = 3.5$

Dinorfina B (1-13) Tyr-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-

Val-Val-Thr

Dinorfina B-29 Tyr-Gly-Phe-Leu-Arg-Arg-Gln-Phe-Lys-

Val-Val-Thr-Arg-Ser-Gln-Glu-Asp-Pro-Asn-

Ala-Tyr-Tyr-Glu-Glu-Leu-Phe-Asp-Val

Dinorfina A (1-8) Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile

α-Neoendorfina Tyr-Gly-Phe-Leu-Arg-Lys-Tyr-Pro

β-Neoendorfina Tyr-Gly-Gly-Phe-Leu-Arg-Lys-Tyr-Pro-Lys

 $\mu/\kappa = 11$ $\mu/\delta = 2.3$

[Leu⁵]encefalina Tyr-Gly-Gly-Phe-Leu

RELAZIONI STRUTTURA-ATTIVITA'

- Tyr¹ e Gly² sono fondamentali
- Gly³: sostituzione con L o D-Ala ↑ potenza e selettività κ
- Ciclizzazione 2-5 ↓ affinità κ
- Ponte S-S fra Cys⁵ e Cys¹¹ o fra Cys⁸ e Cys¹³ ↑ affinità e selettività κ

O N ····IICH₃ ····ICH₂-CH₃

Chetociclazocina

Etilchetociclazocina

Bremazocina

(-)1S,2S Eutomero (+)1S,2S Inattivo

1992 - E' stato preparato come antidepressivo

	Affinità μ	Affinità δ	Affinità κ		
	$\mathbf{K_{i}}$ (nM)				
Struttura	[³ H]DAMGO	[³ H]DPDPE	[³ H]U69,593	μ/κ	δ/κ
Etilchetociclazocina	1.02	7.0	0.21	4.9	33
Bremazocina	0.46	1.1	0.12	3.8	9.2
Mr2034	0.31	3.8	0.09	3.4	42
U50,488	435	9200	0.69	630	13333
U69,593	2460	9900	0.67	3672	14776
U62,066	43.7	4530	0.35	125	12943

U62,066 (Spirandolina)

CI-977 Eccezionalmente $K_i^{\kappa} = 0.83 \text{ nM}$ potente e

selettivo

 $\delta/\kappa = 1250$

 $\mu/\kappa = 1520$

BRL 52656

	Affinità μ	Affinità κ	
	K _i (n		
Composti	[³ H]DAMGO	[³ H]U69,593	μ/κ
(-)U69,593	2694	1.89	1425
ICI 197067	347	0.14	2479
BRL 52537	1560	0.24	6500
BRL 52656	2341	0.57	4107

Agonisti κ periferici

Sono composti ad azione antidolorifica locale che vengono utilizzati nei dolori antidicii.

ICI 204448

EMD 60400

EMD 61753

GR 94839

BRL 52974

Antagonisti κ-selettivi

TENA

Effetto antagonista in vitro nel GPI e MVD					
IC ₅₀ agonisti ^a /IC ₅₀ controllo Selettività					ività
Composto	EKC ^b	Morfina ^b	DADLE ^c	μ/κ	δ/κ
TENA	16.91	3.24	7.17	0.19	0.42

 $^{^{\}rm a}$ In presenza di $2x10^{-8}$ M di antagonista nel GPI e $1x10^{-7}$ M di antagonista nel MVD. $^{\rm b}$ Determinato nel GPI. $^{\rm c}$ Determinato nel MVD.

$$R = H$$
 nor-BNI

$$\mathbf{R} = \mathbf{CH}_3 \quad \mathbf{BNI}$$

OPIOID-RECEPTOR-LIKE (ORL-1) - OP4

In aggiunta ai tre sottotipi recettoriali degli oppioidi (μ , δ , e κ), nel 1994 è stato scoperto un nuovo recettore oppioide indicato come ORL con le seguenti caratteristiche:

- Recettore accoppiato a proteine G;
- Alta omologia di sequenza (> 60%) rispetto agli altri recettori oppioidi;
- Nonostante l'elevata omologia di sequenza, i tipici ligandi oppioidi sia di natura peptidica che non peptidica non si legano a questo recettore;
- Presente in tutte le regioni cerebrali e nel midollo spinale. Si trova anche nell'intestino, nel vas deferens, nel fegato e nella milza. Non è presente nei muscoli scheletrici, nell'esofago, nei reni e nelle ghiandole surrenali.
- E' stato identificato un agonista endogeno chiamato:

Orphanin-FQ (OFQ) o Nociceptin (NC)

è un eptadecapeptide con la seguente struttura:

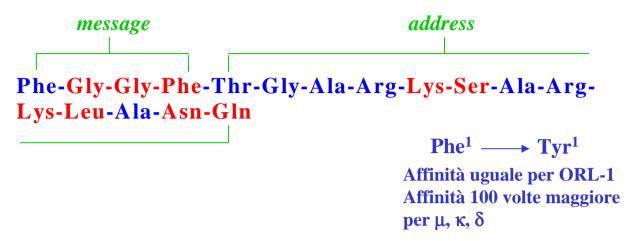
Phe-Gly-Gly-Phe-Thr-Gly-Ala-Arg-Lys-Ser-Ala-Arg-Lys-Leu-Ala-Asn-Gln

- L'Orfanin-FQ (OFQ) o Nociceptin (NC) è generata da pro-Orphanin-FQ o pro-Nociceptin
- Il profilo farmacologico di NC non è stato ancora completamente definito, ma certamente NC ha attività analgesica.

SAR della Nociceptina

- L'inserimento di aminoacidi a configurazione D non è tollerata;
- L'accorciamento della sequenza sul lato N-terminale riduce drasticamente affinità ed attività anche se viene tolto un solo amminoacido:
- L'accorciamento della sequenza sul lato C-terminale riduce progressivamente attività ed affinità;
- Frammenti con una funzione ammidica terminale sono più attivi;
- Il più corto frammento attivo è: N/NC(1-13)-NH₂ (*)
- La sostituzione in (*) del legame peptidico fra Phe¹ e Gly² con il raggruppamento CH2NH genera un agonista parziale molto potente.

Potenzialità applicative


Agonisti:

- Ansiolitici
- Stimolanti dell'appetito
- Analgesici
- Soppressori del "drug abuse"
- Antiepilettici

Antagonisti:

- Anoressizzanti
- Analgesici
- Agenti nootropici

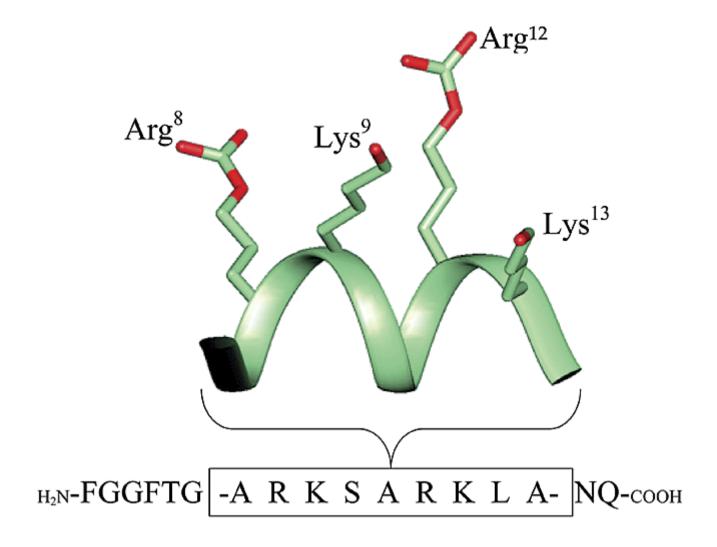
Orphanin-FQ (OFQ) o Nociceptin (NC) 17 AA

Dinorfina A (1-17)

Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln

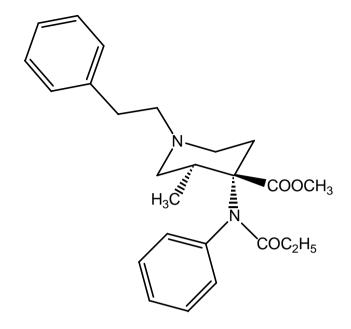
α-Endorfina

Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr


[Met⁵]encefalima

Tyr-Gly-Gly-Phe-Met

Sequenze amminoacidiche e risultati farmacologici *in Vitro* sui recettori ORL-1 Umani per NC e analoghi Peptidici contenenti All Aib- o MeAla


Peptide	Sequenza amminoacidi	ORL-1 K _i (nM)	ORL-1 EC ₅₀ (nM)	ORL-1 <i>E</i> _{max} , %
1	NC	0.3 ± 0.02	0.45 ± 0.06	100
2	[Aib ⁷]NC-COOH	0.1 ± 0.02	0.27 ± 0.08	97 ± 2
3	[Aib ¹¹]NC-COOH	0.48 ± 0.18	1.0 ± 0.1	96 ± 2
4	[Aib ¹⁵]NC-COOH	0.15 ± 0.02	0.47 ± 0.14	91 ± 4
5	[MeAla ⁷]NC-COOH	15 ± 4	96 ± 2	95 ± 4
6	[MeAla ¹¹]NC-COOH	20 ± 8	407 ± 97	97 ± 3
7	[MeAla ¹⁵]NC-COOH	1.1 ± 0.4	5.3 ± 1.1	93 ± 5
8	[Aib ⁷]NC-CONH ₂	0.05 ± 0.01	0.06 ± 0.03	82 ± 8
9	[Aib ¹¹]NC-CONH ₂	0.08 ± 0.01	0.14 ± 0.08	82 ± 7
10	[Aib ¹⁵]NC-CONH ₂	0.02 ± 0.01	0.2 ± 0.01	97 ± 4
11	[MeAla ⁷]NC-CONH ₂	2.2 ± 0.7	10.5 ± 1.5	94 ± 3
12	[MeAla ¹¹]NC-CONH ₂	6.7 ± 2	52 ± 8	91 ± 1
13	[MeAla ¹⁵]NC-CONH ₂	0.06 ± 0.02	0.73 ± 0.11	87 ± 5
14	[Aib ⁷ ,Aib ¹¹]NC-CONH ₂	0.05 ± 0.01	0.08 ± 0.03	90 ± 9

 $MeAla = N-Me \ Alanina$ $Aib = C^{\alpha}-Me \ Alanina$ $\alpha-Amino-isobutyric \ Acid$

Rappresentazione della sequenza della Nociceptina (NC) in cui il sottosegmento, ARKSARKLA, viene raffigurato in una conformazione ad α-elica come una probabile forma bioattiva. La natura anfipatica è evidente dalla distribuzione monofacciale delle coppie dei residui Arg-Lys in questo segmento.

COMPOSTI DI SINTESI

Lofentanile

E' il primo composto che ha mostrato attività su ORL-1.

ORL-1 pK _i	Recettori oppioidi pK _i			
	μ κ δ			
7.6	9.9 8.3 9.1			
$\mu/ORL-1 = 200$				

Modifiche apportate:

- Eliminazione del metile sull'anello piperidinico
- Modifica del sostituente sull'atomo di azoto basico
- Modifica della funzione ammidica e di quella esterea

	p	pK _i	
	ORL-1	μ	ORL-1/μ
(R,S)	9.2	8.2	10
(R)	9.6	8.4	16
(S)	8.7	7.9	6

p K _i				
ORL-1	μ	ORL-1	μ	
10.1	8.5	9.4	7.3	
ORL-1/μ: 40		ORL-1/μ: 126		

ZICONOTIDE (Prialt)

Nel 2004 è stato introdotto questo farmaco a struttura peptica quale analgesico da utilizzare in pazienti affetti da dolore acuto cronico e che non tollerano o sono refrattari al trattamento con analgesici sistemici.La Ziconotide è un equivalente sintetico di una conotossina, componente peptidico del veleno del *Conus magnus*, un mollusco marino.

E' un bloccante dei canali neuronali del Calcio (N Ca²⁺)

Cys-Lys-Gly-Lys-Gly-Ala-Lys-Cys-Ser-Arg-Leu-Met-Tyr-

 ${\bf Asp-Qys-Cys-Thr-Gly-Ser-Cys-Arg-ser-Gly-Lys_{\overline{1}}Cys-NH_2}$