A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle

Raymond J. Cho,*# Michael J. Campbell,†
Elizabeth A. Winzeler,‡ Lars Steinmetz,*
Andrew Conway,† Lisa Wodicka,‡
Tyra G. Wolfsberg,§ Andrei E. Gabrielian,§
David Landsman,§ David J. Lockhart,§
and Ronald W. Davis*‡

*Department of Genetics
†Department of Biochemistry
Department of Genetics
§ National Center for Biotechnology Information
∥ Affymetrix
Santa Clara, California 95051
$National Center for Biotechnology Information
National Library of Medicine
Bethesda, Maryland 20894

Summary

Progression through the eukaryotic cell cycle is known to be both regulated and accompanied by periodic fluctuation in the expression levels of numerous genes. We report here the genome-wide characterization of mRNA transcript levels during the cell cycle of the budding yeast S. cerevisiae. Cell cycle-dependent periodicity was found for 416 of the 6220 monitored transcripts. More than 25% of the 416 genes were found directly adjacent to other genes in the genome that displayed induction in the same cell cycle phase, suggesting a mechanism for local chromosomal organization in global mRNA regulation. More than 60% of the characterized genes that displayed mRNA fluctuation have already been implicated in cell cycle period-specific biological roles. Because more than 20% of human proteins display significant homology to yeast proteins, these results also link a range of human genes to cell cycle period-specific biological functions.

Introduction

The events of DNA replication, chromosome segregation, and mitosis define a fundamental periodicity in the eukaryotic cell cycle. Precise coordination of the unidirectional transitions between these stages is critical to cell integrity and survival. Loss of appropriate cell cycle regulation leads to genomic instability (Hartwell and Kastan, 1994) and is believed to play a role in the etiology of both hereditary and spontaneous cancers (Hunter and Pines, 1994; Wang et al., 1994; Sherr and Roberts, 1995; Wölfel et al., 1995; Hall and Peters, 1996). Cell cycle-dependent mRNA fluctuation has been observed for genes involved in many cellular processes, including control of mRNA transcription (Wittenberg et al., 1990; Oehlen et al., 1996), responsiveness to external stimuli (Zanolari and Riezman, 1991; Oehlen and Cross, 1994), and subcellular localization of proteins (Scully et al., 1997). Genetic studies have revealed that the activity of cell cycle-regulatory proteins is required for normal DNA repair (Painter and Young, 1980; Weinert and Hartwell, 1988; Weinert, 1997), meiosis (Jang et al., 1995; Verlhac et al., 1996), and multicellular development (Gönczy et al., 1994; Thomas et al., 1994, 1997; Dong et al., 1997). These observations suggest that all eukaryotic cells experience important physiological changes during the cell cycle, and that diverse biological events depend on maintenance of this periodicity.

The numerous biological changes associated with the cell cycle make it an attractive model for the study of genome-wide regulation of gene activity. Parallel identification of all of the genes in a genome that are coordinately regulated during such a process provides a consistent internal standard for comparison of gene activity over time and makes it possible to search statistically for candidate regulatory sequences. Although the cell cycle-dependent regulation of many individual genes has been studied, comprehensive results for a genome are likely to reveal novel functional and physical organization in coordinate gene regulation. These results also provide an opportunity to identify related genes in the human genome that may be involved in cell cycle period-specific roles.

One of the key mechanisms of gene regulation takes place on the level of mRNA transcription. Availability of complete sequence for the Saccharomyces cerevisiae genome has made it possible to quantitate mRNA transcript levels for virtually every yeast gene (DeRisi et al., 1997; Wodicka et al., 1997). In this study, commercially available high-density oligonucleotide arrays were used to quantify mRNA transcript levels in synchronized yeast cells at regular intervals during the cell cycle. DNA oligonucleotide probes are directly synthesized on these arrays without individual manipulation or PCR amplification, minimizing the potential for cross-hybridization or clone error (Lashkari et al., 1997).

Results and Discussion

To obtain synchronous yeast culture, cdc28-13 cells were arrested in late G1 at START by raising the temperature to 37°C, and the cell cycle was reinitiated by shifting cells to 25°C. Cells were collected at 17 time points taken at 10 min intervals, covering nearly two full cell cycles. Cells exhibited over 95% synchrony throughout the time course, as determined by bud size and nuclear position (Figure 1). Poly(A)+ RNA was isolated from each sample, converted to cDNA, labeled, and hybridized to yeast whole genome oligonucleotide expression arrays (Figure 2). To obtain cells synchronized in a different way, an isogenic strain bearing the cdc15-2 allele, which enables arrest in late G2, was used to generate a second time course. Transcript levels from the cdc15-2 arrest
fluctuations observed in the cdc28-13 time course were discernable in the cdc15-2 time course. Because a greater degree of cell synchrony was observed with the cdc28-13 allele than with the cdc15-2 allele, subtle fluctuations were more easily discerned in the cdc28-13 time course. Graphs comparing mRNA fluctuation from both time courses are available at the WWW site http://genomics.stanford.edu.

Some differences in transcript levels could result from the shift between the restrictive and permissive temperatures and from the state of cell cycle arrest. To avoid temperature-induced effects unrelated to cell cycle progression, determination of cell cycle phase was based on data from cdc28-13 time points taken more than 40 min past the point of release from arrest. The 1348 genes whose normalized mRNA level changed by more than 2-fold during this portion of the time course were visually examined for periodicity of expression in both the cdc28-13 and cdc15-2 strains. 416 genes were identified that demonstrated consistent periodic changes in transcript level (Table 1, Figure 3). This number represents approximately 7% of all yeast genes and agrees with previous estimates of the number of genes in S. cerevisiae that display cell cycle-dependent transcription (Koch and Nasmyth, 1994). The largest observed change in induction, 25-fold, was observed for both CLN1 and RNR1. These changes are consistent with published results. The location of periodically transcribed genes was not observably biased toward any particular chromosome, and every chromosome contained at least one cell cycle-regulated gene. A database containing a list of these genes, their relative mRNA fluctuations, and their functional classifications can be found at the WWW site described above.

The time course was divided into early G1, late G1, S, G2, and M phases based on the size of the buds, the cellular position of the nucleus, and standardization to more than 20 transcripts whose mRNA fluctuations have been previously reported (Figure 4) (Koch and Nasmyth, 1994). 134 of the 416 cell cycle-regulated transcripts peaked in late G1, while only 56 transcripts peaked during M phase. Transcripts that peaked in late G1 displayed particularly sharp rates of accumulation and decay, while transcripts that peaked in S generally displayed a less dramatic induction pattern. More than half of the transcripts that peaked in late G1, including the cyclin-dependent kinase gene CDC28, which peaks twice, in G1 and G2. Genes displaying two transcriptional peaks were classified separately.

Identification and characterization of upstream regulatory sequences are critical to elucidating global mechanisms of transcriptional regulation. Several upstream regulatory sequences involved in cell cycle-dependent transcription have already been identified, including the late G1 elements MCB (MluI cell cycle box) and ECB
Global Transcription during the Mitotic Cell Cycle

(Stu14/6 cell cycle box) and the early G1 element SCB (early cell cycle box) (Nasmyth, 1985; Breeden and Nasmyth, 1987; Andrews and Herskowitz, 1989; McInerny et al., 1997). Of all genes with an MCB element within 500 bp of the start codon, 39% displayed periodic transcription in late G1 phase (Table 2). Of all genes with an ECB element within 500 bp of the start codon, 67% displayed periodic transcription in early G1 phase. However, only 7.4% of genes with an SCB element within 500 bp showed cell cycle-dependent transcription in late G1. The proportion of transcripts in the genome that is cell cycle regulated is 6.8%. Furthermore, a similar frequency of SCB elements was observed upstream of genes induced in cell cycle phases other than late G1. Therefore, the presence of an upstream SCB sequence is not predictive of periodic transcriptional fluctuation in late G1. One explanation for this observation is that the sequences adjacent to regulatory elements can negatively modulate their effects on transcription. Alternatively, these instances may represent transcripts that degrade too slowly to display sharp fluctuations in level during the cell cycle. Upstream regions of all genes were also searched for other known yeast regulatory sequences, including the ABF1 and RAP1 transcription factor binding sites. None of these sites were found with disproportionate frequency in the upstream regions of one class of cell cycle-regulated genes.

Other cell cycle period-specific transcription factors such as Swi5 do not have a highly conserved binding sequence, making it difficult to accurately search genomic sequences for possible sites of action (Breeden and Nasmyth, 1987; Ogas et al., 1991; Brazas and Stillman, 1993; McBride et al., 1997). However, it is unlikely that these binding sequences alone could completely account for the number of late G1 genes in which a known regulatory region could not be found. In addition, known cell cycle-regulatory sequences were observed rarely in the promoter regions of genes induced in G2, M, or S phase. Therefore, although these results indicate that the known cell cycle-regulatory sequences MCB and ECB have significant predictive value with regard to cell cycle-regulated transcription in the yeast genome, it is likely that the majority of upstream elements conferring cell cycle-specific transcription have yet to be identified.

The generation of a comprehensive list of coregulated genes makes it possible to statistically analyze a large set of promoter regions for previously undetected regulatory elements. A data base of potential transcriptional regulatory sequences was created by extracting the 500 bp upstream of the translational start site of every gene in the genome. This data set was then searched for hexanucleotide and heptanucleotide sequences that occurred with disproportionate frequency in the upstream regions of one set of cell cycle-regulated genes. The two short sequences that displayed the greatest bias toward the promoter regions of genes in each cell cycle category are listed in Table 2 as candidate coregulatory elements for new regulatory elements.

Some of these short sequences were then visually inspected to determine a longer consensus sequence. For example, the sequence 5′-GTAACA-3′ was found upstream of nearly 40% of the genes induced in G2 and M, but upstream of less than 14% of genes induced at other times. After visual inspection of several G2 and M gene upstream regions, this sequence was expanded to 5′- AAAANGTAAACAA-3′. A search of noncoding sequence revealed that this sequence was found upstream of 8% of genes induced in G2, but upstream of less than 0.2% of other genes in the genome (Table 2). Of all genes downstream of this sequence, 58% displayed transcriptional oscillation during the cell cycle.

Another method for identifying candidate regulatory elements is the examination of RNA sequences that have been previously implicated in cell cycle-dependent transcription, but for which a clear consensus sequence has not been established. For example, it has been shown that the MCM1 transcription factor plays a direct role in the induction of certain genes during G2 and M (Althoeffer et al., 1995). The core MCM1 binding site 5′-CCYWWNNGG-3′ was examined in upstream regions of genes induced in G2 phase. The expanded core MCM1 binding sequence 5′- TWTNWCCYAAANNGGNN AAA-3′ was observed within 1500 bp upstream of six genes induced during G2, but was not found again in the genome. Furthermore, nearly 20% of genes induced during G2 are downstream from similar putative MCM1 binding sites that are flanked by a T-rich region at the 5′ end and an A triplet at the 3′ end. Interestingly, the expanded site described above also resembles the constitutively bound MCM1 sites found upstream of the G2 genes CLB1, CLB2, SWI5, BUD3, and BUD4 (Althoeffer et al., 1995; Sanders and Herskowitz, 1996). Because no single sequence was found near a majority of genes induced in G2 and M, it is possible that a number of separate elements may be responsible for periodicity of mRNA abundance during these phases. Like the ECB
<table>
<thead>
<tr>
<th>Table 1. Transcriptional Periodicity in Biologically Characterized Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early G1 phase (33/63)</td>
</tr>
<tr>
<td>Cell Cycle Regulation</td>
</tr>
<tr>
<td>YLR207c WSC1</td>
</tr>
<tr>
<td>YLR079c WSC2</td>
</tr>
<tr>
<td>YDR240c WSC3</td>
</tr>
<tr>
<td>Directional Growth</td>
</tr>
<tr>
<td>YLR200w BEM1</td>
</tr>
<tr>
<td>DNA Replication</td>
</tr>
<tr>
<td>YLR023c MCM2</td>
</tr>
<tr>
<td>YLR012c MCM3</td>
</tr>
<tr>
<td>Mating Pathway</td>
</tr>
<tr>
<td>YLR016c GPA1</td>
</tr>
<tr>
<td>YLR115c FER1</td>
</tr>
<tr>
<td>Glycansis, Respiration</td>
</tr>
<tr>
<td>YCR006c CT1</td>
</tr>
<tr>
<td>YCR010c CLN4</td>
</tr>
<tr>
<td>Biogenesis</td>
</tr>
<tr>
<td>YLR099w FAS3</td>
</tr>
<tr>
<td>Miscellaneous</td>
</tr>
<tr>
<td>YBR007c THP1</td>
</tr>
<tr>
<td>S phase (44/74)</td>
</tr>
<tr>
<td>Cell Cycle Regulation</td>
</tr>
<tr>
<td>YRR175w DFB2</td>
</tr>
</tbody>
</table>

Functionally characterized genes whose transcripts display periodic fluctuation are listed according to their biological function. The MIPS data base was used to determine which genes have been characterized. Under each phase heading, the number of characterized genes that peak only in that category is listed as a proportion of the total genes in that category. The category of Chromosome Segregation includes the process of nuclear division. Genes that peak in more than one cell cycle phase are listed under both phases and marked with an asterisk (*).
sequence, G2 and M regulatory elements may be relatively rare, but highly specific in determining mRNA fluctuation. Alternatively, regulatory sequences that affect transcription during these periods may be relatively degenerate. Another explanation for transcript fluctuation during the cell cycle is that some transcripts may display differential stability. For example, it is known that mammalian histone mRNA is destabilized at the end of S phase (Ross, 1995). Both methods described here for identifying candidate regulatory elements will become increasingly relevant as additional genome-wide transcription data is generated. Further investigation will be needed to assess the role of candidate regulatory sequences suggested by these experiments.

The chromosomal position of genes can strongly influence their transcription, as observed in the silencing of genes in telomeric regions (Shore, 1997). Little evidence was observed for a direct correlation between telomeric or centromeric gene location and mRNA fluctuation during the cell cycle. However, more than 25% of all genes displaying periodic transcript levels were positioned directly adjacent to another gene induced in the same cell cycle phase (Figure 3). The proportion of cell cycle-regulated genes that would occupy adjacent positions by random chance is less than 5%. Because many eukaryotic transcription factor-binding sites are either nearly palindromic or are active on both strands, it is possible that these gene pairs are regulated by the same upstream sequence. Consistent with this hypothesis, 51% of these gene pairs are transcribed divergently on opposite strands, many with fewer than 1500 bp bases separating their 5’ ends. 38% of adjacent genes were transcribed in the same orientation, while only 11% were transcribed convergently. Fewer than 25% of the adjacent gene pairs that were divergently transcribed displayed different patterns of mRNA fluctuation. This suggests that in genomes with limited intergenic sequence, sharing of upstream regulatory elements may be an important determinant of global mRNA regulation. It is also possible that the clustering of cell cycle-regulated genes results from local positional effects that are not sequence dependent. For example, the restructuring of chromosomes during cell cycle events such as DNA replication may affect the transcription of genes at specific chromosomal positions.

The biochemical functions of genes displaying periodic mRNA fluctuation were examined. Consistent with previous studies, cell cycle-dependent changes in transcript level were observed for the CLN and CLB cyclin families, transcription factors, and gene products involved in DNA replication and packaging (Figures 4A and 4B) (Wittenberg et al., 1990; Koch and Nasmyth, 1994). The resolution of these experiments was sufficient to distinguish induction of the MCM genes and CDC6, which are involved in formation of the prereplication complex (pre-RC) during early G1, from the DNA polymerase subunits, DNA replication factors, and the S phase cyclin CLB5, which are induced in late G1 (Figure 4C). The kinetic separation is biologically significant because it reflects the need for the prereplication complex to be assembled prior to production of the S phase cyclins (Stillman, 1996). Activation of S phase cyclins permits exactly one round of DNA replication by simultaneously driving origin firing and inhibiting the reassembly of the prereplication complex. It is likely that additional clues to functional genetic relationships reside in these transcriptional data.

As expected, genes encoding constituents of a protein complex were generally coregulated. The DNA replication factors RFA1, RFA2, and RFA3 displayed nearly identical patterns of mRNA fluctuation. However, mRNA levels of components of the spindle pole body were induced in different cell cycle phases, perhaps reflecting distinct temporal roles for these genes.
Figure 4. Fluctuation of Transcript Levels during Mitosis

Graphs of normalized transcript level divided by mean value against time for: (a) transcripts for the CLN1, CLN2, CLB1, and CLB2 cyclin genes; (b) transcripts for EST1, PDS5, POL12, and YHR110W; (c) transcripts for CLB5, the prereplication genes CDC6, CDC46, CDC47, CDC54, MCM2, and MCM3, and the DNA replication genes CDC17, CDC21, DPB2, DPB3, POL2, POL12, POL30, PRI1, RFA1, RFA2, and RNR1; (d) the S phase transcripts CIN8, KIP1, SPC98, STU2, SW1, YBR156c, YDR219c, YER018c, YJL118w, and YNL176c, and the M phase transcripts ACE2, CLB1, CLB2, CDC5, DBF2, HDR1, HST3, MCM6, MYO3, PRY1, SKN1, TSM1, and WTM3.

Periodic mRNA fluctuation was also observed in functional classifications of genes not previously associated with the cell cycle. For example, transcripts for the FAA1, FAA3, and ELO1 enzymes, which participate in fatty acid biosynthesis, peaked during G1. Many of the nuclear-encoded mitochondrial enzymes required for glycolysis and oxidative phosphorylation were induced in early G1 with very similar patterns of mRNA fluctuation. None of the transcripts for these mitochondrial genes peaked outside of G1.

Because proteolysis is known to be a critical factor in regulating progression of the cell cycle, transcripts of both proteolytic effectors and substrates were examined for periodic changes in transcript levels. No periodic fluctuation was observed for any transcripts encoding constitutents of the anaphase-promoting complex (APC), the CDC34 complex, or ubiquitin-dependent degradation pathway, which are involved in the proteolytic degradation of key cell cycle regulators at the onset of anaphase and the onset of DNA replication (King et al., 1996; Deshaies, 1997; Imiger and Nasmyth, 1997; Osaka et al., 1997; Page and Hieter, 1997; Verma et al., 1997; Yew and Kirschner, 1997). As previously reported, the transcripts of all known proteolytic substrates displayed cell cycle-dependent periodicity. However, the resolution of these experiments allowed direct comparison between patterns of mRNA fluctuation. For example, the transcripts of the APC substrates ASE1 and CLB2 displayed identical kinetics of decay during G1, while the transcript of the APC substrate PDS1 showed a distinct pattern of decay during S phase. Interestingly, ASE1 and CLB2 are degraded by the same APC pathway, while the degradation of PDS1 seems to involve distinct regulatory components (Visintin et al., 1997). These results suggest that attenuation of gene activity on the mRNA and protein levels may be coordinately regulated.

It has been proposed that mRNA and protein expression patterns may provide clues to the function of previously uncharacterized genes (Lander, 1996). To assess the likelihood that uncharacterized genes found in our screen play a cell cycle period-specific role, the correlation between mRNA fluctuation and gene function was examined. More than 60% of the characterized genes that displayed cell cycle-dependent mRNA fluctuation have been previously implicated in cell cycle period-specific biological activities. Therefore, mRNA regulation is a strong indicator of biological function in the cell cycle, and it is likely that many of the uncharacterized genes in this screen have functions related to the cell cycle. However, periodicity of mRNA abundance was observed in fewer than 25% of all known CDC genes...
Table 2. Established and Candidate Upstream Regulatory Elements

<table>
<thead>
<tr>
<th>Promoter Element</th>
<th>5'-3' Sequence</th>
<th>Early G1 63</th>
<th>Late G1 134</th>
<th>S 74</th>
<th>G2 56</th>
<th>M 56</th>
<th>Genome 5519</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCB</td>
<td>ACGGCTNA</td>
<td>6 (0.2)</td>
<td>53 (39)</td>
<td>11 (14)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>111 (2.0)</td>
</tr>
<tr>
<td>SCB</td>
<td>CACGAA</td>
<td>15 (23)</td>
<td>26 (19)</td>
<td>20 (26)</td>
<td>8 (14)</td>
<td>5 (8.9)</td>
<td>931 (15)</td>
</tr>
<tr>
<td>ECB</td>
<td>WTTCCGNNNAGGAA</td>
<td>8 (12)</td>
<td>1 (0.7)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1.8)</td>
<td>5 (0.1)</td>
</tr>
<tr>
<td>in text</td>
<td>AAANAGTAAACAA</td>
<td>0 (0)</td>
<td>1 (0.8)</td>
<td>1 (1.4)</td>
<td>5 (8.9)</td>
<td>4 (7.1)</td>
<td>6 (0.01)</td>
</tr>
<tr>
<td>in text (MCM1-based)</td>
<td>TWTNCYYAANNNGNNAAA</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>6 (11)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Hexamers</td>
<td>CCCCCG</td>
<td>13 (21)</td>
<td>3 (2.2)</td>
<td>2 (2.7)</td>
<td>1 (1.8)</td>
<td>1 (1.8)</td>
<td>320 (5.8)</td>
</tr>
<tr>
<td></td>
<td>ACGGGG</td>
<td>8 (13)</td>
<td>3 (2.2)</td>
<td>6 (8.1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>283 (5.1)</td>
</tr>
<tr>
<td></td>
<td>ACACCGT</td>
<td>8 (13)</td>
<td>64 (48)</td>
<td>16 (22)</td>
<td>0 (0)</td>
<td>1 (1.8)</td>
<td>222 (4.0)</td>
</tr>
<tr>
<td></td>
<td>AACCAGG</td>
<td>11 (17)</td>
<td>68 (51)</td>
<td>22 (30)</td>
<td>2 (3.6)</td>
<td>1 (1.8)</td>
<td>543 (9.8)</td>
</tr>
<tr>
<td></td>
<td>CGGATC</td>
<td>0 (0)</td>
<td>19 (14)</td>
<td>11 (15)</td>
<td>2 (3.6)</td>
<td>0 (0)</td>
<td>533 (9.7)</td>
</tr>
<tr>
<td></td>
<td>GCAGAAA</td>
<td>13 (21)</td>
<td>57 (43)</td>
<td>33 (45)</td>
<td>21 (38)</td>
<td>8 (14)</td>
<td>1265 (23)</td>
</tr>
<tr>
<td></td>
<td>GAGTCA</td>
<td>2 (2.2)</td>
<td>4 (3.0)</td>
<td>7 (9.5)</td>
<td>13 (23)</td>
<td>5 (9.0)</td>
<td>740 (13)</td>
</tr>
<tr>
<td></td>
<td>CGCGCG</td>
<td>1 (1.6)</td>
<td>4 (3.0)</td>
<td>3 (4.1)</td>
<td>9 (16)</td>
<td>1 (1.8)</td>
<td>150 (3.1)</td>
</tr>
<tr>
<td></td>
<td>AAACCC</td>
<td>10 (16)</td>
<td>14 (10)</td>
<td>6 (8.1)</td>
<td>13 (23)</td>
<td>24 (43)</td>
<td>1031 (19)</td>
</tr>
<tr>
<td></td>
<td>AACTCC</td>
<td>7 (11)</td>
<td>16 (12)</td>
<td>8 (11)</td>
<td>4 (7.1)</td>
<td>17 (30)</td>
<td>893 (16)</td>
</tr>
</tbody>
</table>

Regulatory sequences (5’ to 3’) and their frequency of occurrence in the 500 bp upstream of genes that display cell-cycle-dependent mRNA fluctuation are listed. Genes with more than one transcriptional peak were not considered for these calculations. The last 10 sequences are the hexamers that show the greatest bias toward the promoters of genes in each cell cycle category. Both strands were searched for regulatory sequences. Calculations for the MCM1-based site involve upstream regions greater than 500 bp. Frequency of sites is also shown for 5519 non-cell-cycle-regulated genes in the yeast genome. Percentage of genes in each category containing the regulatory sequence is listed in parentheses.

and genes known to be involved in budding, DNA replication, or other cell cycle period-specific biological roles. Many of the genes that do not display periodic transcript levels are known to be modulated at the post-translational level. It has also been established that the constitutive transcription of some genes with periodic transcript levels do not result in an obvious phenotype (Koch and Nasmyth, 1994). These results strongly emphasize the need for multiple approaches in elucidating the function of uncharacterized genes. It is likely that additional aspects of coordinate mRNA regulation await discovery from this data set. We encourage the reader to explore the data base, which can be viewed at the internet address given above.

Experimental Procedures

All S. cerevisiae strains used in this study were derived from the W1011 genetic background. Strain K3445 (YNN553) contains the cdc28-13 allele and strain K2944 (YNN554) contains the cdc15-2 allele (kindly provided by K. Nasmyth). Strain K3445 was grown overnight in YPAD (yeast extract/peptone/glucose). Difco Laboratories, Detroit, MI) at 25°C to a density of 8.0 × 10⁶ cells/ml and divided into 50 ml aliquots. Cells were diluted in the evening so that on the following morning, their density would be appropriate for heat shock and arrest. On the following morning, all samples were transferred to a 37°C shaking waterbath for 165 min. The cell cycle was reintiated by moving the flasks to a 25°C shaking waterbath. Every 10 min, one 50 ml sample was centrifuged for 2 min at 25°C, frozen in liquid nitrogen, and stored at –80°C until use. An identical time course was carried out for 50 ml cultures of strain K2944, and cells were frozen at –80°C until further use.

Frozen cell pellets were thawed by vortexing with 5 ml of neutral phenol (USB Laboratories, Cleveland, OH) and 5 ml of 75 mM NH₄OAc, 10 mM EDTA. Cells were broken by vortexing vigorously for 5 min with 5 g of 0.5 mm glass beads in 30 ml polypropylene tubes (Nalgene, Rochester, NY). Extraction with phenol was followed by an extraction with an equal volume of phenol:chloroform. Following ethanol precipitation of nucleic acid, poly(A)⁺ RNA was purified from total RNA with an Oligotex dT-column selection step (Qiagen, Chatsworth, CA). Purified poly(A)⁺ RNA appeared undegraded on an agarose gel. Ribosomal bands were substantially reduced, and the final poly(A)⁺ RNA yield was approximately 1.2% of total RNA. Reverse transcription reactions were performed using 20 µg of poly(A)⁺ RNA, 2 nmol of oligo dT21 primer, 10 mM DTT, 1st Strand Buffer (GibCO Life Technologies, Gaithersburg, MD), 400 U of each dNTP (New England BioLabs), and 4000 U of Superscript II Reverse Transcriptase (GIBCO). RNA and primer were annealed for 10 min at 65°C, and the reaction was incubated at 42°C for 60 min.

For second-strand synthesis, the following components were added to reverse transcription reactions: 120 µl of 5× 2nd Strand Buffer (GibCO), 110 nmol of each dNTP, 12 U of RNase H (GIBCO), 160 U of E. coli DNA polymerase I (GIBCO), and 40 U of E. coli DNA ligase (New England Biolabs, Beverly, MA). The 600 µl reaction volume was incubated at 16°C for 180 min. 30 U of T4 DNA polymerase (GIBCO) was added to each reaction for 5 min at 16°C. Reactions were extracted with an equal volume of phenol:chloroform. Phase-Lock Gel 5 Prime-3Prime, Inc., Boulder, CO) was used for all organic extractions to increase DNA recovery and decrease the potential for contamination with material from the organic interface. Double-stranded cDNA was ethanol precipitated and resuspended in 30 µl of distilled water. cDNA was fragmented to an average length of 50 bp with addition of 3.5 µl ofOne-Phor-All buffer (Pharmacia Biotech, Piscataway, NJ), 2.2 µl of 25 mM CoCl₂ (Boehringer Mannheim, Indianapolis, IN), and 0.15 U of amplification-grade DNAaseI (GibCO). Reactions were incubated at 37°C for 5 min and terminated by incubation in a boiling water bath for 15 min. Following boiling, reactions were immediately chilled on ice. DNA fragments were 3´ end-labeled by a 2 hr incubation at 37°C after addition of 1.25 nmol of biotin-N₄-ddATP (DuPont NEN, Boston, MA) and 25 U of terminal transferase (Boehringer Mannheim).

A set of four oligonucleotide arrays containing a total of more than 250,000 oligonucleotides complementary to 6,218 yeast genes were used for quantification of labeled cDNA (Affymetrix). End-labeled and fragmented cDNA was diluted to 200 µl using a hybridization solution containing 1.0 M NaCl, 10 mM Tris–HCl (pH 7.6), and 0.005% Triton X-100 (referred to as ST-T). In addition, the solutions contained 0.1 mg/ml unlabeled, sonicated herring sperm DNA (Pro-mega). cDNA samples were heated for 90°C for 2 min and cooled to room temperature before being placed in the hybridization cartridge. Hybridizations were carried out at 42°C for 14-16 hr with mixing on a rotisserie at 60 rpm. Following hybridization, the solutions were removed, the arrays were rinsed with 6× SSPE-T (0.9 M NaCl, 60
Acknowledgments

We thank the labs of Frederick Cross and Kim Nasmyth for providing reagents. Helpful comments were provided by Tim Stearns, Darla Siekhause, and Eunice Yoon. This work was supported by a National Institutes of Health Institutional Training Grant in Genome Science.

Received March 25, 1998; revised June 4, 1998.

References

Sanderson, S.L., and Herskowitz, I. (1996). The BUD4 protein of yeast,

