Feed RSS: Molecularlab.it NewsiCalendar file
Categorie

Nuova ipotesi per arrestare la degenerazione dei muscoli

Fibre del tessuto muscolare


Ricercatori dell'Università di Firenze scoprono un meccanismo per salvare i muscoli dalla fibrosi, utile contro la distrofia muscolare di Duchenne

Si può arrestare la degenerazione muscolare che si osserva nella distrofia muscolare di Duchenne, grave malattia genetica dei muscoli? Una possibile risposta arriva da uno studio finanziato da Telethon e pubblicato sulla rivista Molecular Biology of the Cell da Paola Bruni, professore di Biochimica presso l'Università di Firenze.

In condizioni normali, quando un muscolo subisce un danno viene riparato da particolari cellule di origine staminale, chiamate mioblasti: grazie a una vera e propria cascata di segnali chimici, i mioblasti vengono richiamati nella sede del danno e indotti a proliferare e a dare origine a nuove fibre muscolari. In condizioni patologiche, però, queste cellule staminali non producono nuovo tessuto muscolare, ma tessuto fibroso: di fatto, è come se i muscoli si riempissero di cicatrici, diventando sempre più rigidi, incapaci di contrarsi e di compiere la loro normale funzione.
La sostituzione di tessuto muscolare con tessuto fibrotico (fibrosi) è un fenomeno caratteristico non solo della distrofia di Duchenne, ma più in generale di tutte le malattie degenerative del muscolo scheletrico.

In questo studio Paola Bruni e il suo gruppo di ricerca hanno dimostrato per la prima volta il meccanismo con cui i mioblasti possano essere "dirottati" verso la fibrosi invece che verso la formazione di nuovo tessuto muscolare. Il meccanismo consiste nell'aumento della produzione di una speciale molecola, chiamata sfingosina 1-fosfato, che ha la particolarità di avere un effetto diverso sulle cellule a seconda di chi la riceve. Esistono infatti diversi recettori per la sfingosina 1-fosfato, localizzati sulla superficie delle cellule e capaci di mandare segnali ben precisi una volta che questa sostanza si lega a loro. Per esempio, quando la sfingosina 1-fosfato si lega al suo recettore S1P2, manda ai mioblasti il segnale di trasformarsi in muscolo, quando invece si lega al recettore S1P3 li indirizza a differenziarsi in tessuto fibroso. E nell'insorgenza della fibrosi l'aumentata produzione di sfingosina 1-fosfato si accompagna proprio all'incremento del recettore S1P3.

L'idea dei ricercatori fiorentini è quindi quella di bloccare con dei farmaci il recettore S1P3, in modo da arrestare la produzione di tessuto fibroso che si osserva progressivamente nei pazienti distrofici o affetti da altre malattie degenerative dei muscoli: pur non curando la malattia si potrebbe comunque rallentarne la progressione e migliorare la qualità della vita di queste persone. Prossimo obiettivo è dunque verificare in vivo se il blocco selettivo del recettore S1P3 possa effettivamente arrestare la degenerazione dei muscoli.

Redazione MolecularLab.it (06/02/2010)
Pubblicato in Biochimica e Biologia Cellulare
Tag: S1P3, S1P2, Duchenne, mioblasti, sfingosina, fibrosi, muscoli
Vota: Condividi: Inoltra via mail

Per poter commentare e' necessario essere iscritti al sito.

Registrati per avere:
un tuo profilo con curriculum vitae, foto, avatar
messaggi privati e una miglior gestione delle notifiche di risposta,
la possibilità di pubblicare tuoi lavori o segnalare notizie ed eventi
ed entrare a far parte della community del sito.

Che aspetti, Registrati subito
o effettua il Login per venir riconosciuto.

 
Leggi i commenti
Notizie
  • Ultime.
  • Rilievo.
  • Più lette.

Evento: Congresso Nazionale della Società Italiana di Farmacologia
Evento: Synthetic and Systems Biology Summer School
Evento: Allosteric Pharmacology
Evento: Conference on Recombinant Protein Production
Evento: Informazione e teletrasporto quantistico
Evento: Into the Wild
Evento: Astronave Terra
Evento: Advances in Business-Related Scientific Research
Evento: Conferenza sulle prospettive nell'istruzione scientifica
Evento: New Perspectives in Science Education


Correlati

 
Disclaimer & Privacy Policy