Uno sguardo ai meccanismi della mente

Inside Neuroscience

4 settembre 2009 - 1:00 pm

L’Olfatto, un mosaico di ipotesi

Preambolo

Finalmente le tanto meritate vacanze sono iniziate anche per me, e colgo l’occasione per finire finalmente questo post in elaborazione oramai da tanto tempo, come al solito cortesemente corretto da Valentina. Qui descriverò un argomento abbastanza lungo, difficile e ‘spigoloso’ per i profani ed esperti, anche se penso che tutti lo conoscono almeno un po’ per sentito dire.

Parleremo dell’olfatto, un argomento non facile da raccontare in un post divulgativo senza ‘smussare’ qua e là il mosaico di teorie e di esperimenti che sono stati fatti fino ad ora.

L’Olfatto: Alcuni dettagli ovvi

Olfatto

Come al solito mi servirò inizialmente di qualche punto di riferimento per metterci d’accordo ed inizierò dagli odori che sono causati, come tutti voi sapete, da molecole sprigionate dalle sostanze e disperse nell’aria che respiriamo, dove raggiungono il nostro naso. L’altro punto di riferimento utile si trova subito dietro il naso e sopra la volta della nostra cavità buccale dove passano tutte le molecole che noi respiriamo. E’ una cavità rivestita da una mucosa di circa 10 cm2 che attraverso la solubilizzazione, la dispersione, l’adsorbimento e quant altro, ferma una porzione delle molecole che si trovano nello stadio aeriforme nella cavità nasale e le disperde nel fluido mucoso. Qui le molecole possono incontrare una o più cellule recettoriali olfattive (ORC), in un uomo adulto se ne contano circa 10-20 milioni, ricche di propagini dette ciglia e di proteine dette recettori olfattivi (da qui chiamate Odorant Receptor OR).

I OR hanno il compito ‘legare’ in maniera più o meno specifica alcuni gruppi funzionali di queste molecole presenti nel fluido mucoso, ed innescare una cascata di eventi che si amplifica fino ad attivare la cellula recettrice e scatenare la propagazione del ‘segnale odoroso’. Il cervello, a sua volta, provvederà ad interpretare il segnale in diversi stadi con una serie di meccanismi molto complessi. Per dettagli ed approfondimenti potete guardare questo link.

Fin qui il tutto è quasi scontato ed ovvio, però dalla teoria alla pratica c’è una notevole differenza, vi dico subito che ancora oggi ci sono vari lati oscuri che cercherò di descrivervi in parole semplici, portandovi ai problemi scientifici in maniera intuitiva per quanto sia nelle mie capacità.

Quanti odori esistono?

mosaicoCome penso molti di voi possono intuire, esiste un numero inimmaginabile di odori, e la maggioranza di questi è causato da un mix di ‘odori primari’ in diversi rapporti, ma a complicare la situazione c’è che una molecola odorosa può agire su decine di recettori diversi con diversa specificità. I OR dei composti aminici, ad esempio, riconoscono solamente l’azoto primario, secondario o terziario con diversa efficacia, per cui gli odori di questi composti non possono essere discriminati con facilità e sembrano tutti molto simili. C’è da dire però che nonostante questa piccola sovrapposizione di segnali si possono discriminare con elevata sensibilità circa 10.000 odori diversi.

Ciò premesso, consentitemi da questo punto in poi di semplificare e di concentrarci esclusivamente sugli ‘odori primari‘ che sono riconosciuti quasi esclusivamente da un solo tipo di OR e che danno una sensazione odorosa molto precisa.

Cosa c’è di difficile?

better-than-free_id690012_size485Nel mondo animale, il non saper distinguere l’odore di una preda dall’odore del proprio predatore fa la differenza tra fare una buona colazione ed essere la colazione di qualcun altro. Anche riconoscere l’odore delle cose che si possono mangiare da quelle che è meglio evitare è fondamentale per la sopravvivenza, quindi i mammiferi durante l’evoluzione hanno accumulato più di 1.000 geni che sovraintendono il più misterioso dei 5 sensi. In pratica più del 3% del genoma dei mammiferi è deputato alla percezione degli odori, e dato che questi recettori possono riconoscere anche più tipologie di molecole con diversa affinità determinando una combinazione di interazioni intermedie, questo amplifica esponenzialmente il ventaglio di sensazioni che possono dare le molecole presenti nell’aria.

La chiave di volta per ottenere un buon olfatto è sicuramente il collegamento tra le cellule recettoriali odorose (ORC) ed il cervello, ovvero quel meccanismo che consente di poter capire quale specifico OR è stato attivato. Si tratta di un meccanismo per nulla banale, e come punto di riferimento, possiamo considerare l’esempio del gusto, dove i recettori cellulari sono generati in base alla localizzazione sulla superficie della lingua. Nel cervello si forma una sorta di correlazione tra aree specifiche corticali ed aree della lingua denominata ‘mappa sensoriale‘. A questo consegue che è possibile percepire il salato, l’amaro, il dolce ed l’acido in base a quale zona della lingua è stata stimolata maggiormente.

Possiamo trasportare questa ipotesi nell’olfatto, ed immaginare che l’area in cui si trovano le ORC determina anche il set di recettori da esprimere. Ipotizziamo che ciascuna cellula recettrice dell’olfatto possa esprimere un centinaio o più OR localizzati in diverse aree della mucosa nasale. Ogni area in cui vi sono le ORC potrebbe essere correlata ad una zona del cervello a cui corrisponderebbero determinate sensazioni odorose.

Quanti recettori per cellula?

recettoriSapere quanti tipi di recettori sono presenti per cellula è fondamentale per capire quante aree ci dovremmo aspettare di trovare e per verificarlo potremmo ricorrere a tecniche avanzatissime di in situ hybridization, e di retrotrascrizione ed amplificazione per PCR su singola cellula. Ovviamente non sono tecniche facili e nemmeno tanto diffuse, ma gli esperti sono riusciti a dimostrare con questi esperimenti che ogni ORC esprime solamente un singolo OR.

Una cosa simile avviene durante il differenziamento cellulare, dove la combinazione di alcuni fattori trascrizionali decide l’attivazione di meccanismi sempre più specializzati che ‘bloccano’ l’espressione  specifica di determinati geni. Questo meccanismo, definito ‘deterministico’, è quello maggiormente utilizzato durante la specializzazione cellulare nel nostro organismo. Potremmo ipotizzare un meccanismo simile per le ORC in cui dalla combinazione di alcuni fattori trascrizionali si determina l’attivazione dell’espressione di un singolo OR.

Verifica della Teoria Deterministica

La prima pistaSecondo questa teoria la combinazione casuale o pseudocasuale di fattori trascrizionali per esprimere un singolo OR non può essere disturbata dalla coespressione di un OR transgenico scelto da noi. Per verificare questa teoria ‘deterministica‘, quindi, possiamo generare un topo transgenico in cui alcune ORC esprimono in maniera forzata un determinato OR scelto da noi e valutare se c’è coespressione.

Il risultato è interessante, non c’è alcuna sovrapposizione di segnali tra il OR espresso forzatamente da noi ed un qualsiasi altro recettore olfattivo endogeno. In pratica l’espressione forzata del nostro OR transgenico non permette di esprimere un qualsiasi altro OR endogeno, e se si tenta di generare un topo transgenico con una espressione forzata di due OR diversi nella stessa ORC, queste muoiono per apoptosi. Questi dati non sono di certo a supporto per la teoria deterministica, evidentemente la scelta del recettore olfattivo è un meccanismo molto più complesso. Ad aggiungere benzina sul fuoco c’è un’altra prova interessante, ovvero le ORC possono cambiare più volte il recettore odoroso espresso prima di prendere contatto con il cervello (maturazione cellulare). La teoria deterministica è molto fallace con questi risultati, poco probabile che sia quella buona.

La Teoria Stocastica

roulette-2Un’altra teoria che si è fatta strada nel tempo è basata sulla casualità della scelta del OR espresso (teoria stocastica). Per capirci immaginiamo un fattore trascrizionale  unico che sia in grado di legare il promotore di tutti i geni dei OR e di consentirne l’espressione; tecnicamente può legarsi ad un solo OR e quindi può esprimere solo quello. Se il fattore trascrizionale non è molto efficiente nell’esprimere un OR si potrebbe spiegare come mai una ORC cambia OR nei primi stadi pur seguendo sempre la regola di esprimere un solo OR alla volta. In seguito, quando un OR espresso dà un forte segnale di funzione (feed-back) il fattore trascrizionale si fissa sul gene che sta trascrivendo fino allo stadio di maturazione.

E’ una teoria che funziona e che spiega anche i risultati dei topi transgenici; il OR transgenico blocca l’espressione di altri recettori attraverso un feed-back abberrante. Però, come al solito la teoria va convalidata, e c’è l’imbarazzo della scelta sul come; una prova schiacciante potrebbe derivare dall’eliminazione del feed-back recettoriale. In particolare potremmo alterare un gene OR in modo tale da codificare un recettore non funzionante pur conservandone la struttura genica.

I risultati dimostrano che il topo transgenico non esprime mai un OR non funzionante, probabilmente proprio per la mancanza del feed-back del recettore maturo necessario per fissare la scelta. Per esserne sicuri, è stata effettuata una controprova per dimostrare che le ORC tentano di esprimere il OR non funzionante, e che solo successivamente cambiano la scelta su un altro gene OR che funzioni. Per dimostrarlo si è generato un topo transgenico in cui l’espressione anche transiente del recettore non funzionante provoca un danno irreversibile al DNA della stessa cellula (tecnica Cre/LoxP), ed i risultati hanno mostrato che le ORC scelgono il OR transgenico e non funzionante con la stessa probabilità di tutti gli altri OR, sebbene questa scelta sia cambiata prima della maturazione cellulare per mancanza di feed-back. Un’altra prova conclusiva e schiacciante è che la generazione di un topo trangenico che esprime un OR esogeno e non funzionante non disturba l’espressione dei OR endogeni. Questo dimostra che è la funzione di un OR a bloccare l’espressione dei OR endogeni, non la struttura e l’espressione dei geni OR endogeni.

La spina nel fianco per la Teoria Stocastica

La teoria stocastica fino ad ora ha sempre soddisfatto tutti i dati sperimentali ottenuti, ma ciononostante ha un punto debolissimo. Questa teoria è retta dalla possibilità di poter innescare la trascrizione di qualsiasi dei 1.000 geni dei OR da uno o pochi fattori trascrizionali, e questo sarebbe possibile solo nel caso in cui i geni OR presentino una sequenza consenso che li identifichi nel genoma. Ebbene, nonostante molti ricercatori si siano impegnati nell’analisi di omologie di sequenze tra i geni degli OR, i risultati ottenuti sono stati alquanto deludenti; con i dati attuali si potrebbero raggruppare non più di una decina di geni degli OR per volta tirando in ballo meccanismi di riconoscimento improbabili.

E se fossero dei Linfociti?

linfocita-tSe ci pensate, esiste un meccanismo di scelta molto simile che avviene nei linfociti. Queste cellule, però, non decidono l’anticorpo da esprimere in base a fattori trascrizionali, ma attraverso una ricombinazione genetica guidata. Si tratta di una piccola deviazione della teoria stocastica ed è anche risolutiva.

Come al solito dobbiamo convalidare tale teoria… ed escludiamo subito la proposta di sequenziare l’intero genoma di singole cellule, sarebbe difficilissimo e ci vorrebbero tanti anni! Possiamo ricorrere ad un trucco chiamato FISH (fluorescent in situ hybridization), ovvero rendere fluorescente una sonda ad RNA verso un introne di un OR. In questa tecnica non è possibile valutare una ricombinazione genica in maniera diretta, tuttavia è possibile localizzare dove inizia la trascrizione di un determinato gene all’interno del nucleo e valutare se, in seguito ad una ricombinazione, cambia posizione. I risultati, alquanto discutibili, dimostrano che il sito di inizio della trascrizione avviene sempre nello stesso punto del nucleo e del genoma, quindi niente ricombinazione, ma c’è una novità inaspettata; la trascrizione di un OR proviene solamente da un singolo allele.

Sbrogliare la matassa di informazioni non è mai facile

broglio di informazioni

Spesso nella ricerca è importante definire delle ipotesi e porsi le domande giuste, ovvero cercare di identificare la cosa più importante di un meccanismo e trarne quante più informazioni possibili per verifica e deduzione. Nel nostro caso la codifica di un singolo allele, cioè solo 1 delle due copie genetiche di un OR, è ancora in linea con la teoria della ricombinazione genetica, poiché se è vero che la scelta è casuale, questa non può avvenire in entrambi gli alleli fratelli allo stesso modo. Inoltre se l’inizio della trascrizione avviene sempre nello stesso punto, questo non esclude che tutto il resto del DNA (es il promotore) possa essere stato ricombinato.

L’ipotesi che ne scaturisce è questa: La cellula sceglie un OR da esprimere in modo casuale, in mancanza di un feed-back funzionale cambia scelta, in seguito, alla maturazione cellulare la scelta diventa definitiva mediante ricombinazione di un promotore o di segnali a monte dell’OR scelto. Questa ipotesi potrebbe spiegare come mai l’espressione forzata di un recettore esogeno possa bloccare l’espressione dei recettori endogeni; probabilmente la proteina inserita provoca un feed-back che innesca una ricombinazione abberrante del DNA nei OR endogeni. La teoria per ora tiene ma con le parole non si dimostra mai niente, è fondamentale convalidare la teoria e questa volta non è per nulla facile evidenziare tante piccole ricombinazioni in singole cellule di 20 micron di diametro circa.

Come dimostrare una ricombinazione che si possa trovare in un qualsiasi punto del genoma? In questo caso il test di validazione è non semplicissimo. L’idea è che la ricombinazione del DNA in una ORC provocherebbe il blocco dell’espressione di un determinato OR in tutte le condizioni, come avviene per un linfocita. Se da questo DNA ricombinato si clonasse il topo stesso da cui deriva… l’animale che risulterebbe dovrebbe esprimere solo un OR, poiché il suo DNA è già ricombinato in maniera irreversibile. I risultati sono stati scioccanti, il topo che ne risulta è perfettamente sano e ha tutto l’apparato olfattivo intatto e funzionante come in un qualsiasi wild-type. Nonostante l’analisi di circa 100 kb a monte ed a valle del gene incriminato non c’è stata nessuna modifica genetica o epigenetica.

Basta un soffio ed il castello crolla

Castello di CarteCertamente la ricombinazione è da scartare ma fino ad ora niente ha smentito la casualità della scelta del OR. Tuttavia un gruppo di ricerca ha recentemente messo in discussione anche questa ipotesi granitica.

L’idea di fondo è la seguente… Se è vero che la cellula sceglie casualmente un gene su circa 1.000, e di questo solo 1 allele, ne consegue che la scelta è di 1 sui 2.000 alleli disponibili. Se riuscissimo ad inattivare solo 1 di questi 2.000 alleli, ad esempio in modo tale che esprima irreversibilmente EGFP (tecnica Cre/loxP), potremmo rendere fluorescenti le cellule che hanno ‘cambiato idea’ per mancanza di feed-back e verificare quale altro gene sceglie dei 1.999 rimanenti.

Il risultato, ancora una volta, è assolutamente strabiliante. Il topo transgenico presenta una coespressione di EGFP solo con il suo allele funzionante corrispondente. In poche parole l’espressione di EGFP, come previsto, non dà feed-back positivo per cui la cellula cambia OR da esprimere; ma la seconda scelta non è per niente casuale, qualcosa guida la scelta sull’allele di ‘backup’ presente sul cromosoma fratello e non sugli altri 1.998 alleli rimanenti. Come potrebbe la cellula riconoscere in modo specifico l’altro allele se la scelta è basata solo sulla casualità? Qualcosa non quadra, ed in questo modo la casualità che ha retto la teoria stocastica fino ad ora è stata, almeno parzialmente, distrutta in un soffio.

L’olfatto che guida l’assone durante il lungo cammino

tomtom-iq-rutes-sceglie-percorso-evitando-ingorghiL’ultima domanda è ‘Cosa succede con il collegamento al cervello quando forziamo una cellula ORC ad esprimere un recettore specifico scelto da noi?’. Gli esperimenti mostrano che il collegamento cervello-recettore è perfetto, quindi ne consegue che il collegamento è basato solo sull’OR espresso.

Ma quando questa scelta cambia all’improvviso?

Per rispondere a questa domanda un gruppo di ricercatori ha tentato di cambiare il recettore scelto dalla cellula poco prima che questa riesca ad ‘agganciarsi’ al cervello (maturare), attraverso un gene OR esogeno ed inducibile.

In questo topo transgenico le ORC scelgono un recettore endogeno in un modo apparentemente casuale, e cominciano la propagazione dell’assone verso il cervello cercando la zona giusta per formare sinapsi. Durante questa fase si può innescare l’espressione del recettore transgenico con il conseguentemente spegnimento del recettore endogeno…

La cellula ancora immatura, come abbiamo visto, si ‘adatta’ al nuovo recettore, ma si aggancerà anche alla zona cerebrale giusta? La risposta è incredibilmente sì. il collegamento e la funzione del recettore è perfetto nonostante il cambio recettoriale durante la formazione dell’assone. Tuttavia, se si cerca di cambiare la scelta dell’OR espresso dopo la maturazione della ORC, si provoca una abberrazione che innesca apoptosi.

Come è possibile che un OR possa guidare la scelta della regione cerebrale giusta a cui ‘agganciarsi’ senza avere altri 1.000 geni deputati al riconoscimento dei diversi OR da parte del cervello?

Qualcuno ha suggerito un’ipotesi alquanto affascinante, secondo cui un OR si trovi alla testa dell’assone durante la fase di elongazione, guidandolo verso il corretto punto di aggancio al cervello come farebbe un cane da tartufo a portarci verso questo prezioso tubero in un intero bosco.

Teoria affascinante e stravagante, tuttavia ancora insoluta ed in cerca di qualcuno che la convalidi o la controbatta con esperimenti, o con ipotesi più semplici.

Conclusione

In questo lungo post abbiamo messo sul piatto tutto quello che è noto sull’olfatto senza uscirne fuori con una teoria solida in grado di spiegare tutti i dati sperimentali. Per chi fa ricerca questo risultato è il pane quotidiano poiché non si seguono mai strade battute, si cerca sempre di crearne nuove, con nuove ipotesi, nuove verifiche e nuove deduzioni che porteranno ad altre ipotesi che si spera siano migliori delle precedenti e più vicine alla verità.

Tutt’ora ci sono gruppi di ricerca che analizzano le seguenze di DNA dei recettori OR cercando qualcosa in comune; analisti in cerca di modifiche epigenetiche in questi clusters genomici; cacciatori di nuovi meccanismi cellulari; esperti di transgeni che tentano nuove e più affascinanti teorie, a volte anche bizzarre… e poi ci sono ricercatori che provano a dare un senso a questo puzzle di dati disarmonici. Il tutto per svelare un mistero che dura da tanti anni oramai.

Non vi è dubbio che ci sono persone che provano un certo fascino nel partecipare a questa continua caccia alla soluzione del problema strato dopo strato, tirando fuori teorie sempre più complesse ed affascinanti, ed a volte come in questo caso si tirano fuori addirittura nuovi meccanismi che si ignoravano fino a poco tempo fa.

Un in bocca al lupo a chi si addentrerà nel risolvere questo mistero anche solo per 5 minuti ed un grazie a Nico e Patrizio per l’incoraggiamento ed i consigli che mi hanno dato per la stesura di questo post.

Tags: Animali transgenici, Apoptosi, Biologia molecolare, Cellule Recettoriali, Cre/LoxP, fattori trascrizionali, mappa sensoriale, Neuroni, neuroni olfattivi, Olfatto, Percezione
14 settembre 2008 - 3:50 pm

Quando il Cervello Decide il Suicidio (II Parte): Se si trattasse di un insolito thriller…

Preambolo

Allora, rieccoci qui dopo le tanto meritate vacanze. Ringrazio tutti quelli che hanno contribuito con commenti, domande e quant’altro al primo capitolo di questa serie, spero che ce ne siano sempre di più, comprese critiche e puntualizzazioni; accetto persino complimenti.

Nel capitolo precedente abbiamo visto un po’ in generale alcune caratteristiche dell’ictus ed abbiamo introdotto il concetto del calcio come strumento di informazione e distruzione cellulare. Ora, in questo capitolo ci concentreremo maggiormente sulla morte neuronale, trattando il tutto come il più classico dei gialli dove le vittime sono i neuroni, la scena del crimine è il cervello dopo l’ictus e dovremo cercare l’assassino capitolo dopo capitolo, strato dopo strato, mettendo sul banco degli imputati diversi “personaggi ambigui” in cerca del vero colpevole. Di volta in volta saranno presentati nuovi personaggi con nuove “verità” e quindi nuove “teorie”. Ovviamente non mancheranno i colpi di scena come nel più classico dei thriller da leggere la sera a letto prima di dormire.

Data l’importanza dei rudimenti medici che stiamo trattando e dell’interesse mostrato in alcuni commenti ho deciso di aggiungere un piccolo paragrafo di chiarimenti e risposte ai commenti nel post precedente. Per chi si annoia a leggere le osservazioni fatte o per chi sa già questi concetti consiglio di saltare il prossimo paragrafo e passare direttamente al paragrafo sulla morte cellulare che spero sia per loro più interessante.

Il Calcio presente nel nostro organismo

Il calcio (simbolo: Ca2+) in una persona di sesso maschile magro rappresenta circa l’1,5% del peso corporeo, per una persona di 70 kg ce n’è circa 1 kg. Sicuramente è lo ione più abbondante del nostro organismo, seguito dal potassio (simbolo: K+) con soli 240 grammi e poi dal sodio (simbolo: Na+) con 100 grammi. Il 99% del calcio del nostro organismo è presente  nelle ossa e nei denti, lo 0,5% è conservato avidamente in particolari compartimenti subcellulari come il reticolo endoplasmatico, insieme a proteine chelanti e mitocondri, come già descritto da Massi-Demish. Solo lo 0,3-0,4% del peso corporeo, circa 0,21 grammi, corrisponde al calcio che è libero di circolare nel nostro organismo e che partecipa a quei meccanismi di cui abbiamo parlato nel post precedente. Per dare un’idea, basti pensare che una mozzarella da 100 grammi contiene 0,4 grammi di calcio, ovvero una quantità doppia rispetto a tutto il calcio libero che è presente nel nostro organismo. Cosa succede se si assume una quantità di calcio superiore alle necessità dell’organismo? quasi sempre alcune cellule specializzate lo depositato nelle ossa oppure lo elimina attraverso le urine. Nei rari casi in cui c’è una carenza di calcio dalla dieta, invece, altre cellule specializzate corrodono meno di un millimetro cubo di ossa (quasi niente) per avere mesi di autonomia da calcio allo stato libero utile per i neuroni e tutte le altre funzioni cellulari descritte. Le nostre ossa sono infatti continuamente corrose e rimodellate in funzione del nostro lavoro fisico, delle trazioni, dai livelli ormonali e tante altre cose, di conseguenza l’organismo può sempre bilanciare l’eccesso o la carenza di calcio libero nei nostri fluidi corporei depositandolo o prelevandolo dalle ossa. Da questo si deduce che la quantità di calcio assunto per via orale di per sé non ha alcuna interferenza sulla quantità di calcio libero nel nostro organismo e di conseguenza non ha alcun effetto neanche sul danno ischemico.

Anche se si considerano i rari casi in cui delle persone, per qualche motivo, hanno una dieta cronica quasi del tutto priva di calcio e che quindi necessitano una integrazione, i livello di calcio libero sono più o meno simili alla media standard. A questi pazienti, però, può essere consigliato l’assunzione di pillole contenenti calcio oppure assumere qualche bicchiere di latte, pezzi di formaggio, carne, acqua del rubinetto per poter ripristinare le riserve di calcio nelle ossa ed evitare spiacevoli facili fratture.

C’è da dire anche che esistono, con una maggiore frequenza, delle persone che hanno carenze di calcio perché non lo riescono ad assumere dal cibo o lo elimina troppo velocemente, come nel caso dell’osteoporosi da menopausa. In questi casi si prescrivono farmaci composti da ormoni che predispongono l’organismo ad accumulare calcio nelle ossa anziché eliminarlo, senza la necessità di variare in alcun modo la dieta. Proprio questi ormoni influiscono sull’ischemia cerebrale, ma per meccanismi che non hanno nulla a che fare con la quantità di calcio ingerito, se volete posso aggiungere un capitolo apposito per questo curioso argomento.

Come può morire una cellula?

Allora, ora prendiamoci una pausa ed immaginiamo per un attimo di trovarci in un insolito thriller e di essere chiamati nel cuore della notte per investigare su un misterioso assassinio di massa. Una volta arrivati sulla scena del delitto, ovvero il cervello ischemico, ci ritroveremmo sicuramente ad analizzare come si presentano le vittime neuronali. Però c’è un problema, anche se fino ad ora abbiamo parlato intuitivamente di morte cellulare, non sappiamo ancora come può morire una cellula e di conseguenza come può presentarsi agli occhi di una insolita polizia scientifica molecolare. Questo è un punto fondamentale poiché ci aiuta a capire meglio la filosofia e la strada che stiamo percorrendo.

Attualmente si classifica la morte cellulare in due tipologie principali:

  • Necrosi: generalmente è il risultato di un acuto stress o trauma che porta alla rottura della membrana cellulare con perdita del materiale biologico in esso contenuto. In questo caso la cellula si presenta in maniera inconsistente e quasi irriconoscibile poiché tutti gli organelli di cui è composta si disperdono nella soluzione in cui è immersa la cellula morta, rendendo spesso i resti irriconoscibili.
  • Apoptosi: si tratta di un processo di morte molto ordinato in cui è la stessa cellula a decidere come e quando morire, e lo fa in modo tale da non dare alcuna tossicità alle cellule circostanti. La cellula si presenta come piccole vescicole ricoperte di membrana e con dei segnali sulla membrana cellulare (epitopi) che indicano “qui c’è materiale riciclabile”.

La necrosi, quindi, è insieme di morti cellulari “accidentali” senza avere un comune denominatore se non la rottura irreversibile della membrana che avvolge le cellule e di conseguenza la dispersione del materiale in esso contenuto. Proprio la perdita di materiale ed il disordine caratteristico di questo tipo di morte può causare infiammazione o tossicità alle cellule circostanti. Sicuramente la necrosi non è un fenomeno che l’organismo e le cellule stesse apprezzano o considerano come destino. L’apoptosi invece è una forma di morte cellulare molto precisa, portata avanti in modo ordinato e regolato, che dà un vantaggio alla popolazione cellulare circostante durante il ciclo vitale dell’organismo. Si tratta in realtà di un vero e proprio “suicidio cellulare” che necessita di tante proteine dedicate che svolgono un complesso e delicato meccanismo a tappe con un preciso schema prestabilito e con consumo di energia. In condizioni normali, l’apoptosi avviene continuamente perché contribuisce al mantenimento del numero di cellule di un sistema; avviene ad esempio in un seno che si ritira dopo la fase di allattamento dove ci sono migliaia di cellule che si “sacrificano” perché sono di troppo o non più necessarie, lo stesso vale per l’utero dopo una gravidanza etc. Ovviamente la mancata regolazione dell’apoptosi può causare disordini da perdita di cellule, caratteristica di molte patologie neurodegenerative, oppure una crescita cellulare incontrollata che è alla base delle neoplasie (tumori).

L’apoptosi, a differenza della necrosi, non causa infiammazione e la morte delle cellule mediante questo processo provoca la formazione di vescicole con un contenuto prestabilito di sostanze che possono essere riciclate da cellule specializzate. Dato che non c’è la rottura della membrana cellulare e che tutte le cellule del nostro organismo conoscono questo processo, l’apoptosi è un processo silenzioso che non fa danno.

L’infarto cerebrale: La scena del crimine

Seguendo la storia sulla falsa riga del “giallo”, la prima domanda è come sono morte le cellule? Hanno eseguito un suicidio di massa (apoptosi) oppure sono morte per trauma (necrosi)?

I ricercatori con un po’ di esperienza sanno bene che un fenomeno di morte in massa è attribuibile solamente alla necrosi, l’apoptosi, infatti, è un fenomeno prevalentemente sporadico, ciò vuol dire che l’apoptosi in natura colpisce poche cellule alla volta e la loro scomparsa è quasi sempre impercettibile, mentre la necrosi è una morte cellulare a cascata, ogni cellula muore poiché si trova vicino una cellula in decomposizione ed è tipico della gangrena, dove si deve amputare un arto per frenare la morte a cascata che potrebbe propagarsi sul corpo del paziente e causarne la morte.

Possiamo essere sicuri che si tratti di necrosi?

Non esistono saggi specifici per la necrosi, ma per esserne sicuri potremmo usare sul cervello ischemico un anticorpo che riconosca selettivamente dei cartelli che indicano “qui c’è materiale apoptotico riciclabile” (epitopo). Se lo facessimo il risultato sarebbe deludente, il segnale apoptotico è molto scarso, l’apoptosi è avvenuta solamente su una piccola percentuale di cellule. E poi basta guardare come si presenta il materiale ischemico; si tratta di una zona amorfa in cui non è possibile riconoscere strutture macroscopiche e microscopiche, tranne alcune cellule resistenti che sopravvivono, e questo ci indica inevitabilmente che si tratta di una massa in necrosi… omicidio quindi.

Se si fosse trattato di una apoptosi di massa?

Se si fosse trattato di apoptosi (suicidio) ci saremmo aspettati qualche cellula qua e là morta con le classiche vescicolette, epitopo dell’apoptosi, assenza di infiammazione e sarebbe stato difficile identificarlo poiché silente.

Le cellule del nostro cervello

homer cervelloL’investigazione quindi è tutta in salita, non possiamo trarre molte informazioni dal ritrovamento delle vittime se non che siano state uccise da un evento molto traumatico avvenuto diverse ore dopo il ristabilirsi delle condizioni ottimali di circolazione sanguigna (vedi post precedente).

Passiamo quindi alla raccolta delle informazioni sulle vittime nella loro vita quotidiana per poi passare alle indagini vere e proprie sull’assassino. Le vittime di questa storia sono ovviamente le cellule che partecipano alla struttura e funzione del cervello e non stiamo parlando solamente di neuroni. Il cervello, infatti, è costituito da centinaia di tipologie cellulari con ruoli distinti e diversamente collegati a tutte le altre cellule circostanti. Nel cervello abbiamo i neuroni che generano i nostri pensieri, che stimolano i muscoli a contrarsi e che generano anche ormoni che modificano il nostro stato fisico e psitico; poi abbiamo le cellule gliali, una famiglia di cellule nutrici per i neuroni che coccolano, proteggono, danno da mangiare e sostengono le cellule neuronali nel loro faticoso ruolo.

Le cellule gliali: Profilo di una serie di badanti ideali

Le cellule gliali sono suddivise in centinaia di ruoli distinti, dai più elementari ai più complessi, e sono anche le uniche cellule del cervello in grado di riprodursi, contrariamente ai neuroni. Proprio questa caratteristica è la prima distinzione tra le due popolazioni, mentre le cellule gliali possono moltiplicarsi e quindi invadere le zone morte in seguito ad un trauma, i neuroni possono solo diminuire il loro numero durante la nostra vita e mai aumentare. Pensate che il numero di cellule della glia in un cervello umano normale supera di nove volte quello dei neuroni, e proprio da questo è nato il falso mito che noi utilizziamo solamente il 10% del nostro cervello per pensare.

Alcune cellule della glia agiscono principalmente da supporto ai neuroni, altre regolano l’ambiente interno del cervello in particolare i fluidi che circondano i neuroni e le loro sinapsi provvedendo quindi al nutrimento delle cellule nervose. Alcuni tipi di cellule della glia producono molecole in grado di influenzare la crescita degli assoni. Altre funzioni sono state scoperte solo recentemente come la possibilità di comunicare con altre cellule.

La principale suddivisione della glia del cervello prevede due categorie principali:

Microglia: cellule specializzate nel mangiare e riciclare i rifiuti, come le cellule apoptotiche e gli agenti che disturbano la quiete del cervello. In genere si spostano all’interno del nostro cervello per rimuovere i corpi apoptotici e per controllare che tutto funzioni bene. In condizioni fisiologiche la microglia è presente solo in piccolo numero ma si moltiplicano in caso di danni neuronali.

Macroglia: una serie di cellule diverse, tra cui astrociti, oligodendrociti, cellule ependimali, glia radiale. I ruoli sono i più diversi tra loro e tutti hanno il comune denominatore di aiutare i neuroni a vivere in un ambiente ideale.

Bhé sicuramente se stiamo cercando un assassino non si troverà tra le vittime, tantomeno nella glia deputata a coccolare e proteggere i neuroni.

Neuroni: profilo di una vittima ideale

Anche i neuroni sono suddivisi in centinaia di sottotipi cellulari, ognuna con funzioni diverse e specifiche, ma tutti i neuroni hanno caratteristiche molto simili tra loro, tanto che possiamo accomunarli tutti in una sola descrizione generale.

I neuroni sono delle vittime ideali, poiché a differenza di tutte le cellule delle nostro organismo non si replicano mai, necessitano di molte cure e basta poco per ucciderle. Tutte le cellule del nostro organismo, infatti, possiedono delle riserve energetiche che sono utili in caso di prolungata assenza di nutrimenti, alcune cellule possono anche adattarsi a metabolizzare sostanze di diversa natura per sopravvivere ed altre ancora si adattano anche alla scarsa presenza di ossigeno. Purtroppo i neuroni fanno eccezione, non hanno riserve energetiche e si nutrono solamente di zucchero raffinato. Quel che è peggio è che non sanno adattarsi diversamente e che basta anche una carenza di ossigeno, sangue o alcune stimolazioni per innescarne la morte.

La vita di un neurone, inoltre, non è per niente facile, la sua membrana plasmatica è simile ad una batteria con una differenza di potenziale, espressa in milliVolt, che cambia in funzione dello stato cellulare, canali che fanno entrare ed uscire ioni modificando continuamente lo stato d’ordine cellulare mentre una serie di pompe ioniche cercano continuamente di ripristinare l’ordine con una certa fatica.

Tutti i neuroni sono poi interconnessi tra loro con una fitta rete di cavi elettrici (assoni e dendriti) che propagano o captano variazioni delle differenze di potenziale di membrana che viaggiano lungo un neurone, tra un neurone e l’altro e da un lato del cervello ad un altro.

Questi processi sono continui anche durante il sonno, durante la vita intrauterina e nel coma.

Se ne deduce che ognuno dei circa 100 miliardi di neuroni che abbiamo alla nascita è continuamente sull’orlo di un baratro con attività che lo spingono a fare cose eccezionali in frazioni di secondo, e tantissime proteine che devono continuamente ripristinare lo stato d’ordine in altrettanti frazioni di secondo con un poderoso dispendio di energia. Pensate che circa il 20% dell’energia che mangiamo, e che serve per farci stare in uno stato “normale”, serve semplicemente per far funzionare il cervello che rappresenta solo il 2% del peso corporeo; un’altra buona quota serve per mantenere ordine nel resto dell’organismo 98% del peso corporeo e solo una frazione piccola è necessaria per l’attività fisica che facciamo.

Conclusioni

In questo lunghissimo post abbiamo introdotto meglio alcuni concetti fondamentali che ci serviranno nei prossimi capitoli dove, se vorrete, cercheremo di prendere in considerazione alcune teorie su cosa sia avvenuto negli ultimi istanti di vita delle vittime, chi era presente al momento della morte, al momento del ritrovamento e soprattutto chi sia stato l’esecutore materiale di questo misterioso delitto, da dove proviene e come potremmo impedire che questo accada.

Tags: Apoptosi, Calcio, Glia, Ictus, Ischemia Cerebrale, Necrosi, Neuroni