Uno sguardo ai meccanismi della mente

Inside Neuroscience

11 aprile 2008 - 12:47 pm

Una luce… eccitante

Come abbiamo già detto in passati post i neuroni comunicano tra loro grazie alla generazione di “scariche elettriche”, chiamate potenziali d’azione. E’ quindi interessante avere la possibilità di generare artificialmente dei potenziali d’azione per studiare le proprietà di un certo neurone o di un network di neuroni. Ad esempio uno può stimolare il neurone 1 e vedere cosa succede al neurone 2 che vi è collegato.

Il classico approccio per fare ciò è utilizzare un elettrodo (un piccolo filamento di argento) inserito in una micropipetta di vetro dalla punta di pochi millesimi di millimetro di diametro e riempita di una soluzione conduttrice. Questo microelettrodo viene messo a contatto con la cellula (rompendone o meno la membrana a seconda del tipo di esperimento) e permette di iniettare con precisione corrente nella cellula, oltre a poterne rilevare l’attività elettrica spontanea.

Esistono però diversi altri approcci per eccitare o inibire un neurone che non richiedono l’utilizzo di un microelettrodo. I vantaggi di non usare microelettrodi sono molteplici, ma i principali sono: 1) andare a piazzare la minuscola punta dell’elettrodo sulla membrana cellulare non è proprio la cosa più semplice del mondo… 2) non si va a disturbare meccanicamente la cellula 3) sono più alla moda oggigiorno, tanto che qualcuno ne parla in un blog :)

Uno di questi metodi è quello di utilizzare un neurotrasmettitore come, ad esempio, il glutamato. Possiamo “spruzzare” una piccola quantità di glutamato sulla cellula e questa, nella maggior parte dei casi, verrà eccitata. Esistono molte variazioni sul tema, ma oggi vi parlerò di un nuovo lavoro, apparso su Nature Methods di questo mese, che ha introdotto un nuovo interessante approccio.

Il lavoro in questione è il seguente: Photochemical control of endogenous ion channels and cellular excitability. – Fortin et al. – Nat. Methods 2008 Apr;5(4):331-8.

Gli autori hanno generato un “photoswitchable affinity label” (PAL), una piccola molecola che si lega selettivamente a canali sulla membrana del neurone che fanno passare gli ioni potassio (K+). In particolare, questa molecola lega un tipo di canali per il potassio (voltage-gated potassium channels) che sono sensibili a variazioni di voltaggio nella cellula. La normale funzione di questi canali è quella di riportare la cellula allo stato basale dopo la generazione di un potenziale d’azione. Insomma hanno un effetto “calmante” sull’attività cellulare.

PAL può legarsi selettivamente a questi canali e bloccarli, impedendo così il passaggio di potassio, risultando quindi in un eccitazione della cellula. La cosa interessante è che PAL è “photoswitchable”, cioè può essere “accesa” o “spenta” utilizzando luce di colori differenti. Questo è dovuto al fatto che PAL può cambiare forma quando viene colpita da luce di un certo colore: utilizzando luce viola PAL non blocca il canale, utilizzando luce verde lo blocca.

Il risultato è facilmente visualizzabile in questa figura:

Come vedete, quando la cellula è colpita da luce verde è iperattiva (ogni linea verticale rappresenta un potenziale d’azione, in alcune parti sono così fitti da non poterli distinguere) perchè PAL sta bloccando i canali al K+, mentre la luce viola silenzia la cellula.

PAL - attivazione/inattivazione neurone

E non è finita così! Il funzionamento è graduale, quindi utilizzando luce di colore intermedio si ottiene una parziale eccitazione della cellula.

PAL - attivazione graduale neurone

Certo, tutto questo è stato fatto su cellule in coltura ma sarebbe molto interessante vedere questo tipo di tecniche utilizzate in vivo (non dubito che ci si arriverà presto…). Ovviamente lo stesso principio potrebbe essere applicato a qualsiasi altro canale sui neuroni, si tratterà solo di sintetizzare molecole specifiche che permettano di legarsi ad altri canali!

Tags: Attività neuronale, Canali voltaggio dipendenti, Elettrofisiologia, Firing, Imaging, Neuroscienze, Potenziali d'azione
14 marzo 2008 - 10:59 pm

Allo specchio (parte seconda, ovvero canta che ti passa)

(…continua dal post precedente)

Come dicevamo nella prima parte di questo post i neuroni mirror giocano un ruolo importante nell’imitazione. In questa seconda parte vi mostrerò un esempio pratico del funzionamento di questi neuroni, parlandovi di un articolo apparso sull’ultimo numero di Nature:
Precise auditory-vocal mirroring in neurons for learned vocal communication – Nature 2008 Jan 17;451(7176):305-10.

Questo articolo mostra la presenza di neuroni mirror nel cervello del passero che vengono attivati quando l’uccello canta una sua canzone e quando sente la stessa canzone cantata da un altro uccello (o sente una registrazione della sua canzone).
Gli uccelli canori, infatti, sono noti per imitare il verso di altri uccelli e i piccoli di queste specie imparano a cantare imitando i propri genitori.

Per effettuare questi esperimenti Prather e colleghi hanno sfruttato il fatto che molti uccelli canori hanno una tendenza al controcanto: quando sentono un altro uccello cantare nel loro territorio, infatti, rispondono cantando anche essi. Questo può essere un gesto di “sfida” nei confronti di un uccello di un’altra specie o ad esempio un gesto di riconoscimento di un “familiare”.
I ricercatori hanno quindi utilizzato registrazioni del canto di vari uccelli e sono riusciti a trovare dei mirror neurons che sono attivati sia quando l’uccello sente la registrazione sia quando vi risponde.

Mirror neurons responses

Questa immagine fa vedere un esempio della risposta di neuroni auditori. Nella prima colonna è mostrata la risposta alla canzone primaria dell’uccello. La prima traccia in alto rappresenta l’attività di un singolo neurone, e ciascuno dei picchi che vanno in basso è corrispondente ad un potenziale d’azione, indice di attività di quel neurone. L’attività è massima in corrispondenza dello stimolo auditorio (che vedete nell’ultima riga).
Se confrontate questa risposta con la risposta ad un altra canzone dello stesso uccello (colonna 2) o di un altro uccello (colonna 3) potete notare come in questi ultimi due casi non ci sia corrispondenza fra lo stimolo e i potenziali d’azione.
La cosa è ancora più chiara guardando la seconda riga che mostra la risposta del neurone a diverse presentazioni dello stimolo. Nel grafico ciascun puntino rappresenta un potenziale d’azione e ciascuna riga rappresenta un diverso trial su quel neurone. Come potete vedere la risposta è quindi altamente riproducibile.

Ma cosa succede durante il controcanto? Beh, ecco un esempio dei risultati ottenuti:
Mirror neurons responses

In a) l’uccello è esposto ad una registrazione della sua canzone primaria, e il neurone è attivo durante quel periodo. A questo punto l’uccello esegue un controcanto in risposta (con la stessa canzone) e il neurone è ancora attivo. Se però la canzone ascoltata e quella cantata differiscono (b e c) il neurone è attivo solo in una delle due situazioni! Insomma, una cosa molto simile a quanto visto nelle scimmie da Rizzolatti e colleghi (vedi post precedente).

Infine gli autori mostrano anche che queste risposte sono specifiche per le singole note del canto. Alcuni neuroni rispondono durante una particolare nota in una sequenza: facendo ascoltare la sequenza al contrario la risposta è molto attenuata, ma invece persiste se si fa ascoltare una registrazione della canzone di un altro uccello che abbia note simili.

Concludendo, questo studio mostra un altro interessante esempio di come il cervello interpreti con precisione le informazioni derivate dall’ambiente e di come l’imitazione sia codificata a livello neuronale. Situazioni simili a quella descritta in questo articolo potrebbero anche essere alla base dell’apprendimento del linguaggio nell’uomo, probabilmente integrate anche da altri stimoli (visuali e motori).

Tags: Elettrofisiologia, Imitazione, Percezione, Potenziali d'azione