Uno sguardo ai meccanismi della mente

Inside Neuroscience

14 marzo 2008 - 10:59 pm

Allo specchio (parte seconda, ovvero canta che ti passa)

(…continua dal post precedente)

Come dicevamo nella prima parte di questo post i neuroni mirror giocano un ruolo importante nell’imitazione. In questa seconda parte vi mostrerò un esempio pratico del funzionamento di questi neuroni, parlandovi di un articolo apparso sull’ultimo numero di Nature:
Precise auditory-vocal mirroring in neurons for learned vocal communication – Nature 2008 Jan 17;451(7176):305-10.

Questo articolo mostra la presenza di neuroni mirror nel cervello del passero che vengono attivati quando l’uccello canta una sua canzone e quando sente la stessa canzone cantata da un altro uccello (o sente una registrazione della sua canzone).
Gli uccelli canori, infatti, sono noti per imitare il verso di altri uccelli e i piccoli di queste specie imparano a cantare imitando i propri genitori.

Per effettuare questi esperimenti Prather e colleghi hanno sfruttato il fatto che molti uccelli canori hanno una tendenza al controcanto: quando sentono un altro uccello cantare nel loro territorio, infatti, rispondono cantando anche essi. Questo può essere un gesto di “sfida” nei confronti di un uccello di un’altra specie o ad esempio un gesto di riconoscimento di un “familiare”.
I ricercatori hanno quindi utilizzato registrazioni del canto di vari uccelli e sono riusciti a trovare dei mirror neurons che sono attivati sia quando l’uccello sente la registrazione sia quando vi risponde.

Mirror neurons responses

Questa immagine fa vedere un esempio della risposta di neuroni auditori. Nella prima colonna è mostrata la risposta alla canzone primaria dell’uccello. La prima traccia in alto rappresenta l’attività di un singolo neurone, e ciascuno dei picchi che vanno in basso è corrispondente ad un potenziale d’azione, indice di attività di quel neurone. L’attività è massima in corrispondenza dello stimolo auditorio (che vedete nell’ultima riga).
Se confrontate questa risposta con la risposta ad un altra canzone dello stesso uccello (colonna 2) o di un altro uccello (colonna 3) potete notare come in questi ultimi due casi non ci sia corrispondenza fra lo stimolo e i potenziali d’azione.
La cosa è ancora più chiara guardando la seconda riga che mostra la risposta del neurone a diverse presentazioni dello stimolo. Nel grafico ciascun puntino rappresenta un potenziale d’azione e ciascuna riga rappresenta un diverso trial su quel neurone. Come potete vedere la risposta è quindi altamente riproducibile.

Ma cosa succede durante il controcanto? Beh, ecco un esempio dei risultati ottenuti:
Mirror neurons responses

In a) l’uccello è esposto ad una registrazione della sua canzone primaria, e il neurone è attivo durante quel periodo. A questo punto l’uccello esegue un controcanto in risposta (con la stessa canzone) e il neurone è ancora attivo. Se però la canzone ascoltata e quella cantata differiscono (b e c) il neurone è attivo solo in una delle due situazioni! Insomma, una cosa molto simile a quanto visto nelle scimmie da Rizzolatti e colleghi (vedi post precedente).

Infine gli autori mostrano anche che queste risposte sono specifiche per le singole note del canto. Alcuni neuroni rispondono durante una particolare nota in una sequenza: facendo ascoltare la sequenza al contrario la risposta è molto attenuata, ma invece persiste se si fa ascoltare una registrazione della canzone di un altro uccello che abbia note simili.

Concludendo, questo studio mostra un altro interessante esempio di come il cervello interpreti con precisione le informazioni derivate dall’ambiente e di come l’imitazione sia codificata a livello neuronale. Situazioni simili a quella descritta in questo articolo potrebbero anche essere alla base dell’apprendimento del linguaggio nell’uomo, probabilmente integrate anche da altri stimoli (visuali e motori).

Tags: Elettrofisiologia, Imitazione, Percezione, Potenziali d'azione
4 marzo 2008 - 2:06 am

Allo specchio

A tutti noi è capitato di dover imparare a fare qualcosa: come è noto uno dei modi migliori è iniziare guardando qualcun altro che fa ciò che vogliamo imparare. Che si tratti di suonare uno strumento, usare un macchinario in laboratorio o imparare a parlare, infatti, l’imitazione gioca sicuramente un ruolo importante nel nostro processo di apprendimento. Ma come funziona esattamente tutto ciò? Abbiamo già detto in post precedenti (ad es. questo e questo) che il nostro cervello memorizza ed impara attraverso il rafforzamento di alcune sinapsi e l’indebolimento di altre… ma come entra l’imitazione in questo sistema?
Purtroppo non vi posso dare una risposta completa, ma vi posso raccontare almeno parte della storia.


Un macaco neonato imita un ricercatore che tira fuori la lingua!
(da Evolution of Neonatal Imitation. Gross L, PLoS Biology Vol. 4/9/2006, e311)

Tutto cominciò circa una decina di anni fa con gli studi di Giacomo Rizzolatti e colleghi all’università di Parma, i quali stavano studiando l’attività dei neuroni della corteccia premotoria del macaco, una regione coinvolta nella pianificazione delle azioni e nella decisione di quali atti compiere (da cui il nome premotoria). Ad esempio, alcuni neuroni di questa regione potrebbero venire attivati quando il macaco prende un pezzo di cibo da un piatto per metterlo in bocca, altri potrebbero essere attivati quando invece si arrampica su di un albero.
Durante i loro studi, Rizzolatti e colleghi scoprirono l’esistenza di una sottopopolazione (10-20%) di questi neuroni, i quali vengono attivati sia quando l’animale fa una certa azione (es. prende una banana), sia quando vede un altro animale fare la stessa azione. Questi neuroni furono chiamati mirror neurons o neuroni specchio e sembrano essere degli ottimi candidati per spiegare questi processi di apprendimento per imitazione.
La precisione di questi neuroni è notevole: ad esempio, un certo neurone che veniva attivato quando la scimmia prendeva il cibo, veniva anche attivato quando vedeva il ricercatore prendere il cibo. Se però quest ultimo usava delle pinze per prendere il cibo l’attivazione era molto minore, e praticamente nulla se faceva il gesto di prendere qualcosa, ma senza che effettivamente ci fosse del cibo.
Da allora, molti studi sono stati fatti nel campo dei neuroni mirror che sono stati trovati anche nell’uomo e in alcune specie di uccelli (come vedremo nella seconda parte di questo post).
In particolare sembra che questi neuroni siano molto importanti nei processi di apprendimento del linguaggio e altri studi hanno suggerito che un loro malfunzionamento potrebbe essere in parte implicato nell’autismo.

Per chi fosse interessato, ecco il link ad uno degli articoli di Rizzolatti: Action recognition in the premotor cortex

(continua…)

Tags: Imitazione, Memoria, Mente, Neuroscienze, Percezione, Plasticità sinaptica, Visione