Uno sguardo ai meccanismi della mente

Inside Neuroscience

3 maggio 2010 - 2:08 pm

Quando la memoria nasce da una stella: c’era una volta un’astrocita…

Come funziona la memoria? Quali parti del cervello sono coinvolte e quali cellule? Un mistero ancora da svelare…Opinione comune nel mondo scientifico è che gli attori principali nel meccanismo mnemonico siano i neuroni. Tuttavia, nell’encefalo esistono altre cellule, in quantità molto maggiore. E se fossero gli astrociti, le cellule-stella, a darci le risposte di questi interrogativi?

Dopotutto, queste cellule costituiscono circa il 90% del tessuto cerebrale…

Continue Reading »

Tags: Astrociti, Attività sinaptica, Calcio, Cellule-stella, D-serina, Glutammato, Ippocampo, LTP, Memoria, Neuroni, NMDA
11 gennaio 2008 - 5:28 am

Splicing

Tornato da una necessaria pausa, riprendo a scrivere parlando un po’ di splicing (e ovviamente faccio gli auguri di buon anno a tutti!).

Devo ammettere che i dettagli dei fenomeni di splicing esulano un po’ dalla mia confort zone, tuttavia ho deciso di scrivere questo post dopo aver letto questo interessante articolo pubblicato su PLoS Biology.
Exon Silencing by UAGG Motifs in Response to Neuronal Excitation – An P, Grabowski J
(ne approfitto per ricordare a tutti che tutti i giornali pubblicati da PLoS sono ad accesso completamente gratuito, e permettono di leggere articoli peer-reviewed di qualità molto alta senza dover pagare alcun abbonamento).

La maggior parte dei geni del nostro organismo possono generare diversi mRNA grazie al processo dello splicing alternativo, per cui lo stesso mRNA precursore viene tagliato in modo diverso da un complesso riboproteico (cioè formato da RNA e proteine) chiamato, con poca fantasia, spliceosoma. In questo modo dallo stesso gene si possono generare diversi mRNA e quindi diverse proteine che possono avere funzioni simili o essere usate per processi completamente diversi. Il cervello non fa certo eccezione, e anche a livello neuronale lo splicing alternativo gioca un ruolo molto importante.

L’articolo in questione è centrato sullo studio dello splicing alternativo del recettore NMDA, un recettore-canale che, in risposta al legame con uno dei principali neurotrasmettitori nel cervello, il glutammato, permette il passaggio di ioni Ca++. Moltissimi gruppi hanno studiato il recettore NMDA, dimostrando come esso sia implicato in moltissimi importanti processi cellulari; tanto per fare un esempio, esso è importante per l’apprendimento, la memoria ed in generale i fenomeni di plasticità neuronale. Lo splicing alternativo di questo recettore riguarda l’inclusione/esclusione dell’esone 21, chiamato anche esone CI della subunità NR1. Questo esone è importante per la localizzazione del recettore in membrana e quindi il controllo del processo di splicing deve essere strettamente regolato.

Gli autori dell’articolo iniziano mostrando che stimolando delle colture primarie di neuroni con KCl, che provoca una depolarizzazione e quindi un eccitamento elettrico di queste cellule, si può modulare lo splicing di questo mRNA.
Insomma, se normalmente c’è l’80% di una forma e il 20% dell’altra, stimolando le cellule si può arrivare ad avere 50% e 50%. Il fenomeno è reversibile eliminando il KCl e lasciando “riposare” le cellule per 24 ore. Questo fenomeno è specifico per i neuroni e, ad esempio, non avviene nelle cellule gliali presenti nelle stesse colture, oltre ad essere specifico solo per alcuni geni.

L’articolo prosegue con ingegnosi esperimenti di biologia molecolare per trovare quale siano le esatte sequenze che mediano l’effetto. Una volta determinate queste sequenze gli autori sono anche stati in grado di “trapiantarle” in un altro gene il cui splicing non viene normalmente modificato dall’eccitazione neuronale e mostrare che esso diventa sensibile al KCl.

Seguono poi vari studi farmacologici che essenzialmente tentano di spiegare il pathway biochimico sottostante a questo processo. Quello che hanno scoperto è che il processo è modulato dallo stesso recettore NMDA che quindi va a controllare il suo stesso splicing.

Questa ipotesi è ben supportata da molta altra letteratura e vari modelli secondo cui un neurone può rispondere ad una sovraeccitazione cronica diminuendo la sua potenza sinaptica, ovvero la sua capacità di ricevere inputs da altri neuroni. Insomma, il neurone viene stimolato eccessivamente e risponde diminuendo la sua responsività a tali stimoli.
Questo può essere visto come un sistema di protezione per le cellule da un’eccessiva stimolazione che, come è noto, può risultare in severi danni.

Il lavoro contiene molti altri interessanti esperimenti su cui non mi dilungherò, ma invito chiunque sia appassionato di biologia molecolare a spendere un po’ di tempo e leggere questo articolo, sicuramente lo troverete molto interessante!

Tags: Biologia molecolare, Memoria, Mente, NMDA